高级人工智能之自编码器Auto-encoders

2023-10-14 01:50

本文主要是介绍高级人工智能之自编码器Auto-encoders,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Traditional (Vanilla/Classical) Autoencoder
  • Variational Autoencoder
    • Kullback–Leibler divergence
    • Reparameterization

这章讲述模型框架和概念的时间较多,好像并没有涉及过多的运算,重在一些概念的理解。

Traditional (Vanilla/Classical) Autoencoder

传统的自编码器常用来进行图像去噪的任务,需要了解其模型架构和流程。

自编码器由两部分组成:从Noisy Input到Z称为编码器,从Z到De-noised Output称为解码器。Input和Output有着相同的维度。
请添加图片描述
自编码器针对输入数据X进行重建,其目的是让X的重建误差最小,这样子能保证输入和输出尽可能地相似。
请添加图片描述
Auto-encoder的训练是一个无监督学习的过程,因为并不需要标记的数据训练。流程如下所示,它将纯净的图像+噪声整体两组数据同时放入Encoder的Input,同时也将纯净的图像放入Decoder的Output,将前向传播训练得出的图像与之前被放在输出口的纯净图像计算误差,从而可以进行反向传播训练。
请添加图片描述

Variational Autoencoder

Variational Autoencoder会从输入的图像中学习概率分布的参数,然后通过这些参数来产生新的图像。从输入的图像X中学到概率分布的变量 μ \mu μ σ \sigma σ,这两组参数分别从hidden-mean-neurons和hidden-variance-neurons中得到, Z Z Z μ \mu μ σ \sigma σ组成的多元高斯分布中随机取样得到,接着放入Decoder进行重建。
请添加图片描述
其训练过程同Auto-encoder一致,在去噪任务中,将噪声图像放入input,纯净图像放入output,通过反向传播进行训练。

其中的关键在于反向传播过程中Loss损失的定义,损失的定义中有两项,先对相关参数进行定义,

q θ ( e n ) ( z ∣ x i ) q_{\theta(en)}(z|x_i) qθ(en)(zxi) 表示接受输入数据 x i x_i xi,返回潜在变量 Z Z Z的概率, Z Z Z是从 μ \mu μ σ \sigma σ组成的多元高斯分布随机产生的, θ ( e n ) \theta(en) θ(en)代表encoder的weights和bias。

P ϕ ( d e ) ( x ^ i ∣ z ) P_{\phi(de)}(\hat x_i |z) Pϕ(de)(x^iz)表示接受潜在变量 Z Z Z产生的Sample,得到输出为 X ^ \hat{X} X^的概率, ϕ ( d e ) \phi(de) ϕ(de)代表decoder的weights和bias。

重建的损失 l i ( θ , ϕ ) = − E x i ∈ X [ E z ∈ Q [ l o g P ϕ ( d e ) ( x ^ i ∣ z ) ] ] l_i(\theta,\phi)=-E_{x_i \in X} \big[E_{z \in Q}[log P_{\phi (de)}(\hat x_i | z)]\big] li(θ,ϕ)=ExiX[EzQ[logPϕ(de)(x^iz)]]需要尽可能地小。由于 P P P为高斯分布,因此可以对上式重写为= 1 N ∑ x i ∈ X ( 1 2 σ x i ^ ∣ z 2 ( x i − μ x i ^ ∣ z ) 2 ) \frac{1}{N}\sum\limits_{x_i \in X}\Big( \frac{1}{2 \sigma^2_{\hat {x_i}|z}}(x_i - \mu_{\hat{x_i}|z})^2\Big) N1xiX(2σxi^z21(xiμxi^z)2).

请添加图片描述

Kullback–Leibler divergence

但是会存在的问题是,虽然整体 l i ( θ , ϕ ) l_i(\theta,\phi) li(θ,ϕ)较小, q θ ( e n ) ( z ∣ x i ) q_{\theta(en)}(z|x_i) qθ(en)(zxi) P ϕ ( d e ) ( x ^ i ∣ z ) P_{\phi(de)}(\hat x_i |z) Pϕ(de)(x^iz)的差异却很大,原因显然是因为它们来自不同的概率分布。因此这里引入了Kullback–Leibler divergence 来衡量两个分布的差异程度,进而 D K L [ q θ ( e n ) ( z ∣ x i ) ∣ ∣ ( N ( 0 , I ) ] D_{KL}\big[ q_{\theta(en)(z|x_i)} || ( N(0,I)\big] DKL[qθ(en)(zxi)∣∣(N(0,I)]衡量了产生图像的分布与标准高斯分布的差异。

最终该模型的Loss定义为 L ( a l l ) = 1 N ∑ x i ∈ X ( 1 2 σ x i ^ ∣ z 2 ( x i − μ x i ^ ∣ z ) 2 ) + D K L [ q θ ( e n ) ( z ∣ x i ) ∣ ∣ ( N ( 0 , I ) ] L^{(all)}=\frac{1}{N}\sum\limits_{x_i \in X}\Big( \frac{1}{2 \sigma^2_{\hat {x_i}|z}}(x_i - \mu_{\hat{x_i}|z})^2\Big)+D_{KL}\big[ q_{\theta(en)(z|x_i)} || ( N(0,I)\big] L(all)=N1xiX(2σxi^z21(xiμxi^z)2)+DKL[qθ(en)(zxi)∣∣(N(0,I)],其物理意义为,在局部的概率分布中,输出与输入之间的误差要尽可能小。
请添加图片描述

Reparameterization

在模型构建的过程中,潜在变量 Z Z Z μ \mu μ σ \sigma σ固定的情况下涉及了随机选择样本点sample的过程,这种随机性导致了不能通过具体的公式来进行反向传播训练,因此引入了reparameterization trick,将随机化进行定量表示. 其将原先平均值为 μ \mu μ,标准差为 σ \sigma σ的高斯分布,表示为 Z = ϵ ⋅ σ x + μ x Z= \epsilon\cdot\sigma_x +\mu_x Z=ϵσx+μx,其中 ϵ ∈ N ( 0 , 1 ) \epsilon \in N(0,1) ϵN(0,1),这样子任意的 Z Z Z都可以通过对 N ( 0 , 1 ) N(0,1) N(0,1)的缩放表示出来。
请添加图片描述
该方法让原先随机化的过程确定化,从而能够进行backpropagation.

请添加图片描述

这篇关于高级人工智能之自编码器Auto-encoders的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/qq_44036439/article/details/127553537
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/207315

相关文章

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据

Spring Boot集成SLF4j从基础到高级实践(最新推荐)

《SpringBoot集成SLF4j从基础到高级实践(最新推荐)》SLF4j(SimpleLoggingFacadeforJava)是一个日志门面(Facade),不是具体的日志实现,这篇文章主要介... 目录一、日志框架概述与SLF4j简介1.1 为什么需要日志框架1.2 主流日志框架对比1.3 SLF4

Spring Boot集成Logback终极指南之从基础到高级配置实战指南

《SpringBoot集成Logback终极指南之从基础到高级配置实战指南》Logback是一个可靠、通用且快速的Java日志框架,作为Log4j的继承者,由Log4j创始人设计,:本文主要介绍... 目录一、Logback简介与Spring Boot集成基础1.1 Logback是什么?1.2 Sprin

全解析CSS Grid 的 auto-fill 和 auto-fit 内容自适应

《全解析CSSGrid的auto-fill和auto-fit内容自适应》:本文主要介绍了全解析CSSGrid的auto-fill和auto-fit内容自适应的相关资料,详细内容请阅读本文,希望能对你有所帮助... css  Grid 的 auto-fill 和 auto-fit/* 父元素 */.gri

MySQL复合查询从基础到多表关联与高级技巧全解析

《MySQL复合查询从基础到多表关联与高级技巧全解析》本文主要讲解了在MySQL中的复合查询,下面是关于本文章所需要数据的建表语句,感兴趣的朋友跟随小编一起看看吧... 目录前言:1.基本查询回顾:1.1.查询工资高于500或岗位为MANAGER的雇员,同时还要满足他们的姓名首字母为大写的J1.2.按照部门

Python中Flask模板的使用与高级技巧详解

《Python中Flask模板的使用与高级技巧详解》在Web开发中,直接将HTML代码写在Python文件中会导致诸多问题,Flask内置了Jinja2模板引擎,完美解决了这些问题,下面我们就来看看F... 目录一、模板渲染基础1.1 为什么需要模板引擎1.2 第一个模板渲染示例1.3 模板渲染原理二、模板

Spring Boot 整合 SSE的高级实践(Server-Sent Events)

《SpringBoot整合SSE的高级实践(Server-SentEvents)》SSE(Server-SentEvents)是一种基于HTTP协议的单向通信机制,允许服务器向浏览器持续发送实... 目录1、简述2、Spring Boot 中的SSE实现2.1 添加依赖2.2 实现后端接口2.3 配置超时时

mysql中的group by高级用法

《mysql中的groupby高级用法》MySQL中的GROUPBY是数据聚合分析的核心功能,主要用于将结果集按指定列分组,并结合聚合函数进行统计计算,下面给大家介绍mysql中的groupby用法... 目录一、基本语法与核心功能二、基础用法示例1. 单列分组统计2. 多列组合分组3. 与WHERE结合使

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

前端高级CSS用法示例详解

《前端高级CSS用法示例详解》在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交互和动态效果的关键技术之一,随着前端技术的不断发展,CSS的用法也日益丰富和高级,本文将深... 前端高级css用法在前端开发中,CSS(层叠样式表)不仅是用来控制网页的外观和布局,更是实现复杂交