利用Python分析金融交易中的滚动Z值

2023-10-13 23:20

本文主要是介绍利用Python分析金融交易中的滚动Z值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,在不断演变的证券交易领域,能够利用数据和统计学的力量提供重要的优势。无论是预测未来价格、分析市场趋势,还是简单地评估特定证券的波动性,数据驱动的见解已经改变了交易者对证券市场的处理方式。这就是Z值的用途,它是一种统计指标,可以为交易者提供有关证券的相对优势和定位的宝贵见解。

想象只需通过观察证券的历史价格和波动性,就能够简单地识别出证券何时可能被过度买入或卖出,这正是Z值可以提供的,本文将深入探讨如何利用Python(作为数据分析的强大工具)进行证券交易中的Z值计算和解读。

1.Z值介绍

Z值提供了一个数据点相对于均值的标准差距离的度量。在交易中,这可以帮助我们了解证券当前价格是否在统计上“正常”,或者是否为异常值。

如同表示正态分布的钟形曲线,大多数证券价格(假设它们服从正态分布,这是一个很大的假设,实际交易中通常并非如此)将位于中间附近。那些位于尾部,超出一定Z值(如1.5或-1.5)的证券,才会引起我们的兴趣。

图片

Z值公式:这是一个数学表示,详细说明了如何使用总体标准差对偏离均值的程度进行标准化。对于希望将证券价格相对于历史数据量化的交易者来说,这个方程式至关重要。

其中:

  • Z是Z值。

  • X是数据点的值。

  • μ是数据的平均值。

  • σ是标准差。

通过以Z值的视角分析股票价格,交易者可以识别潜在的买入/卖出机会。明显高于1.5的Z值可能表明该证券相对于其历史平均价格被高估,而明显低于-1.5的Z值可能表明相反情况。

2.获取数据和初步设置

在深入研究之前,装备正确的工具是至关重要的。通过导入相关的Python库,如用于获取证券数据的yfinance和用于可视化的matplotlib,可以确保一个顺利的开始。

import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt

为了评估证券的异常情况,接下来将目标锁定在一只特定的证券上——为了演示的目的,本文选择了“ASML.AS”。然后,我们使用yfinance库获取历史数据。

tickerSymbol = "ASML.AS"
tickerData = yf.Ticker(tickerSymbol)
tickerDf = tickerData.history(period='1d', start='2020-1-1', end='2023-12-25')

3.计算Z值

本文分析的核心是Z值公式,它有助于评估证券价格相对于其历史的“偏离程度”。针对多个滚动期来计算这个值,以捕捉短期和长期的异常情况。

rolling_mean = close_prices.rolling(window=period).mean()
rolling_std = close_prices.rolling(window=period).std()
z_scores = (close_prices - rolling_mean) / rolling_std

4. 使用信号可视化偏离

通过将滚动Z值与证券价格绘制在一起,我们可以了解证券行为“正常”的时间以及何时可能出现异常情况。特别是Z值超过±1.5的区域,这种视觉线索对于交易者非常重要。可以随意更改Z值的阈值。

import yfinance as yf
import pandas as pd
import matplotlib.pyplot as plt# 常量
Z_THRESH = 2
PERIODS = [30, 60, 90]
TICKER_SYMBOL = "ASML.AS"
START_DATE = '2020-1-1'
END_DATE = '2023-12-25'def fetch_data(ticker_symbol, start_date, end_date):"""Fetches historical data for a given ticker symbol."""ticker_data = yf.Ticker(ticker_symbol)return ticker_data.history(period='1d', start=start_date, end=end_date)def calculate_z_scores(close_prices, periods):"""Calculates Z-scores for given periods."""z_scores_dict = {}for period in periods:# 计算给定周期的滚动平均值rolling_mean = close_prices.rolling(window=period).mean()      # 计算给定周期的滚动标准差rolling_std = close_prices.rolling(window=period).std()       # 计算收盘价的Z值z_scores = (close_prices - rolling_mean) / rolling_std      # 将Z值存储在以周期为关键字的字典中z_scores_dict[period] = z_scoresreturn z_scores_dictdef plot_data(close_prices, z_scores_data):"""Plots close prices and z-scores."""   # 为收盘价和Z值创建子图fig, (ax1, ax2) = plt.subplots(2, sharex=True, figsize=(20, 8))   # 在第一个子图上绘制收盘价ax1.plot(close_prices.index, close_prices, label='Close Prices')for period, z_scores in z_scores_data.items():# 在第二个子图上绘制每个时期的Z值ax2.plot(z_scores.index, z_scores, label=f'Z-Scores {period} days', alpha=0.7)       # 如果周期是列表中的第一个,则在第一个子图上绘制买入/卖出信号if period == PERIODS[0]:buy_signals = (z_scores < -Z_THRESH)sell_signals = (z_scores > Z_THRESH)ax1.plot(close_prices[buy_signals].index, close_prices[buy_signals], 'o', color='g', label='Buy Signal')ax1.plot(close_prices[sell_signals].index, close_prices[sell_signals], 'o', color='r', label='Sell Signal')# 为收盘价子图设置y标签和图例ax1.set_ylabel('Close Prices')ax1.legend(loc="upper left")ax1.grid(True)# 在Z值子图上绘制表示Z值阈值的水平线ax2.axhline(-Z_THRESH, color='red', linestyle='--')ax2.axhline(Z_THRESH, color='red', linestyle='--')   # 设置Z值子图的Y标签和图例ax2.set_ylabel('Z-Scores')ax2.legend(loc="upper left")ax2.grid(True)# 为整个绘图设置主标题plt.suptitle(f'{TICKER_SYMBOL} Close Prices and Z-Scores {Z_THRESH} Treshold')# 显示图表plt.show()# 获取股票代码的历史数据
ticker_data = fetch_data(TICKER_SYMBOL, START_DATE, END_DATE)# 计算指定时期的Z值
z_scores_data = calculate_z_scores(ticker_data['Close'], PERIODS)# 绘制收盘价和Z值
plot_data(ticker_data['Close'], z_scores_data)

ASML.AS证券价格的变化与30天、60天和90天滚动Z值并列,绿色和红色标记分别表示基于Z值阈值的潜在买入和卖出点。

虽然Z值提供了一种数学方法来进行证券分析,但最重要的是要记住交易涉及众多因素。Z值可以是工具箱的一部分,但一定要将统计见解与全面的市场研究相结合。

 

这篇关于利用Python分析金融交易中的滚动Z值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/206579

相关文章

使用Python创建一个功能完整的Windows风格计算器程序

《使用Python创建一个功能完整的Windows风格计算器程序》:本文主要介绍如何使用Python和Tkinter创建一个功能完整的Windows风格计算器程序,包括基本运算、高级科学计算(如三... 目录python实现Windows系统计算器程序(含高级功能)1. 使用Tkinter实现基础计算器2.

慢sql提前分析预警和动态sql替换-Mybatis-SQL

《慢sql提前分析预警和动态sql替换-Mybatis-SQL》为防止慢SQL问题而开发的MyBatis组件,该组件能够在开发、测试阶段自动分析SQL语句,并在出现慢SQL问题时通过Ducc配置实现动... 目录背景解决思路开源方案调研设计方案详细设计使用方法1、引入依赖jar包2、配置组件XML3、核心配

Python开发文字版随机事件游戏的项目实例

《Python开发文字版随机事件游戏的项目实例》随机事件游戏是一种通过生成不可预测的事件来增强游戏体验的类型,在这篇博文中,我们将使用Python开发一款文字版随机事件游戏,通过这个项目,读者不仅能够... 目录项目概述2.1 游戏概念2.2 游戏特色2.3 目标玩家群体技术选择与环境准备3.1 开发环境3

Java NoClassDefFoundError运行时错误分析解决

《JavaNoClassDefFoundError运行时错误分析解决》在Java开发中,NoClassDefFoundError是一种常见的运行时错误,它通常表明Java虚拟机在尝试加载一个类时未能... 目录前言一、问题分析二、报错原因三、解决思路检查类路径配置检查依赖库检查类文件调试类加载器问题四、常见

Python中模块graphviz使用入门

《Python中模块graphviz使用入门》graphviz是一个用于创建和操作图形的Python库,本文主要介绍了Python中模块graphviz使用入门,具有一定的参考价值,感兴趣的可以了解一... 目录1.安装2. 基本用法2.1 输出图像格式2.2 图像style设置2.3 属性2.4 子图和聚

Python使用Matplotlib绘制3D曲面图详解

《Python使用Matplotlib绘制3D曲面图详解》:本文主要介绍Python使用Matplotlib绘制3D曲面图,在Python中,使用Matplotlib库绘制3D曲面图可以通过mpl... 目录准备工作绘制简单的 3D 曲面图绘制 3D 曲面图添加线框和透明度控制图形视角Matplotlib

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获