NLP情感分析和可视化|python实现评论内容的文本清洗、语料库分词、去除停用词、建立TF-IDF矩阵、获取主题词和主题词团

本文主要是介绍NLP情感分析和可视化|python实现评论内容的文本清洗、语料库分词、去除停用词、建立TF-IDF矩阵、获取主题词和主题词团,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 文本数据准备

首先文本数据准备,爬取李佳琦下的评论,如下:

 2 提出文本数据、获得评论内容

#内容读取
import xlrd
import pandas as pdwb=xlrd.open_workbook("评论数据.xlsx")
sh=wb.sheet_by_index(0)
col=sh.ncols
row=sh.nrows
Text=[]
for i in range(row):Text_Context=sh.row_values(i,1,2)[0]Text.append(Text_Context)
del Text[0]
print(Text)

2 进行结巴分词、去除停用词,得到词料

#结巴分词
import jieba
import gensim
#停用词处理import spacy
from spacy.lang.zh.stop_words import STOP_WORDSsent_words = []
for sent0 in Text:try:l=list(jieba.cut(sent0))# print(l)filtered_sentence = []for word in l:if word not in STOP_WORDS:filtered_sentence.append(word)sent_words.append(filtered_sentence)# print( filtered_sentence)except:pass
print(sent_words)
document = [" "

3 生成TF-IDF矩阵:获取逆文档高频词

from sklearn import feature_extraction
from sklearn.feature_extraction.text import TfidfTransformer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizertfidf_model = TfidfVectorizer().fit(document)
# 得到语料库所有不重复的词
feature = tfidf_model.get_feature_names()
print(feature)
# 得到每个特征对应的id值:即上面数组的下标
print(tfidf_model.vocabulary_)# 每一行中的指定特征的tf-idf值:
sparse_result = tfidf_model.transform(document)# 每一个语料中包含的各个特征值的tf-idf值:
# 每一行代表一个预料,每一列代表这一行代表的语料中包含这个词的tf-idf值,不包含则为空
weight = sparse_result.toarray()# 构建词与tf-idf的字典:
feature_TFIDF = {}
for i in range(len(weight)):for j in range(len(feature)):# print(feature[j], weight[i][j])if feature[j] not in feature_TFIDF:feature_TFIDF[feature[j]] = weight[i][j]else:feature_TFIDF[feature[j]] = max(feature_TFIDF[feature[j]], weight[i][j])
# print(feature_TFIDF)# 按值排序:
print('TF-IDF 排名前十的(TF-IDF>1时):')
featureList = sorted(feature_TFIDF.items(), key=lambda kv: (kv[1], kv[0]), reverse=True)
for i in range(10):print(featureList[i][0], featureList[i][1])k=0
m=0
print('TF-IDF 排名前十的(TF-IDF<1时):')
while k<=10:if featureList[m][1]<1:k+=1print(featureList[m][0], featureList[m][1])m+=1

4 结果:

5 画图

#!/usr/bin/python
# -*- coding:utf-8 -*-from gensim import corpora
from gensim.models import LdaModel
from gensim.corpora import Dictionary
#内容读取
import xlrd
import pandas as pd
from gensim import corpora
from collections import defaultdict
import spacy
from spacy.lang.zh.stop_words import STOP_WORDS
#结巴分词
import jieba
import gensim
#停用词处理wb=xlrd.open_workbook("评论数据.xlsx")
sh=wb.sheet_by_index(0)
col=sh.ncols
row=sh.nrows
Text=[]
for i in range(row):Text_Context=sh.row_values(i,1,2)[0]Text.append(Text_Context)
del Text[0]
print(Text)file1 = open('结巴分词结果.txt','w')sent_word = []
for sent0 in Text:try:l=list(jieba.cut(sent0))sent_word.append(l)# print( filtered_sentence)except:passfor s in sent_word:try:for w in s:file1.write(str(w))file1.write('\n')except:passfile1.close()
sent_words=[]
for l in sent_word:filtered_sentence=[]for word in l:if word not in STOP_WORDS:filtered_sentence.append(word)sent_words.append(filtered_sentence)file2 = open('去除停用词后的结果.txt','w')
for s in sent_word:for w in s:file1.write(w)file2.write('\n')
file2.close()dictionary = corpora.Dictionary(sent_words)
corpus = [dictionary.doc2bow(text) for text in sent_words]
lda = LdaModel(corpus=corpus, id2word=dictionary, num_topics=20, passes=60)
# num_topics:主题数目
# passes:训练伦次
# num_words:每个主题下输出的term的数目file3=open("tf-idf值.txt",'w')for topic in lda.print_topics(num_words = 20):try:termNumber = topic[0]print(topic[0], ':', sep='')file3.write(str(topic[0])+':'+''+'\n')listOfTerms = topic[1].split('+')for term in listOfTerms:listItems = term.split('*')print('  ', listItems[1], '(', listItems[0], ')', sep='')file3.write('  '+str(listItems[1])+ '('+str(listItems[0])+ ')',+''+ '\n')except:pass
import pyLDAvis.gensimd=pyLDAvis.gensim.prepare(lda, corpus, dictionary)'''
lda: 计算好的话题模型
corpus: 文档词频矩阵
dictionary: 词语空间
'''pyLDAvis.save_html(d, 'lda_pass10.html')
# pyLDAvis.displace(d) #展示在notebook的output cell中

6 结果展示

 

 

这篇关于NLP情感分析和可视化|python实现评论内容的文本清洗、语料库分词、去除停用词、建立TF-IDF矩阵、获取主题词和主题词团的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/202701

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

基于Python开发Windows屏幕控制工具

《基于Python开发Windows屏幕控制工具》在数字化办公时代,屏幕管理已成为提升工作效率和保护眼睛健康的重要环节,本文将分享一个基于Python和PySide6开发的Windows屏幕控制工具,... 目录概述功能亮点界面展示实现步骤详解1. 环境准备2. 亮度控制模块3. 息屏功能实现4. 息屏时间

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪

springboot下载接口限速功能实现

《springboot下载接口限速功能实现》通过Redis统计并发数动态调整每个用户带宽,核心逻辑为每秒读取并发送限定数据量,防止单用户占用过多资源,确保整体下载均衡且高效,本文给大家介绍spring... 目录 一、整体目标 二、涉及的主要类/方法✅ 三、核心流程图解(简化) 四、关键代码详解1️⃣ 设置

Python中图片与PDF识别文本(OCR)的全面指南

《Python中图片与PDF识别文本(OCR)的全面指南》在数据爆炸时代,80%的企业数据以非结构化形式存在,其中PDF和图像是最主要的载体,本文将深入探索Python中OCR技术如何将这些数字纸张转... 目录一、OCR技术核心原理二、python图像识别四大工具库1. Pytesseract - 经典O

SpringMVC高效获取JavaBean对象指南

《SpringMVC高效获取JavaBean对象指南》SpringMVC通过数据绑定自动将请求参数映射到JavaBean,支持表单、URL及JSON数据,需用@ModelAttribute、@Requ... 目录Spring MVC 获取 JavaBean 对象指南核心机制:数据绑定实现步骤1. 定义 Ja

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

Nginx 配置跨域的实现及常见问题解决

《Nginx配置跨域的实现及常见问题解决》本文主要介绍了Nginx配置跨域的实现及常见问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来... 目录1. 跨域1.1 同源策略1.2 跨域资源共享(CORS)2. Nginx 配置跨域的场景2.1

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三