参照有赞TMC框架原理简单实现多级缓存

2023-10-13 03:10

本文主要是介绍参照有赞TMC框架原理简单实现多级缓存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

大家好,我叫大鸡腿,大家可以关注下我,会持续更新技术文章还有人生感悟,感谢~

在这里插入图片描述

文章目录

  • 项目场景:
  • 解决方案:
  • 个人简单实现相关原理
    • 本地变量
    • 获取本地缓存的数据
      • 数据一致性问题
    • 设置缓存的值
    • 删除缓存
    • 统一获取缓存的方法
    • 重点
      • 优化
  • 所有代码

项目场景:

有位同事因为缓存被后台删除,导致一堆高并发请求直接怼到DB上,导致数据库cpu 100%


解决方案:

  1. 处理缓存击穿问题:像布隆过滤器,或者说提前设置热点key
  2. 就是热点key检测,这里谈到了有赞TMC框架多级缓存以及它的热点key的发现

个人简单实现相关原理

本地变量

像热点key储存,本地缓存以及相关参数设置设置。
在这里插入图片描述

获取本地缓存的数据

在这里插入图片描述
解释:
1.由于是分布式环境,所以先查询下这个key有没有被删除过
2.直接走本地缓存
3.如果是后台数据被修改,redis这个标识被修改到了,我们需要重新加载数据库的数据更新到本地缓存中,以及set到redis中

数据一致性问题

就是redis缓存跟本地缓存一致性问题,我的想法是惰性就行更新,如果有人去读取,先返回本地缓存的旧数据,后面再进行更新,也就是实现最终一致性问题。

存在问题

就是这里的flag在更新之后会变成0,我这里的的优化方案是:采用nacos的版本控制,redis有一份版本,本地也有一份版本,如果说redis上的版本跟本地缓存的版本有所不一样,那么就进行修改本地缓存,以及将最新的版本更新到本地缓存中。

这样的话就不会导致说一台机器把redis设置为0,另一台本地缓存就不会变了。

优化方案

  • 使用nacos版本修改的原理来控制不同机器的本地缓存更新
  • 更新的时候可以加个分布式锁,获得锁才能去查数据库,防止高并发查崩数据库。其次在把这个数据塞到redis还有本地缓存中。

设置缓存的值

加粗样式

删除缓存

在这里插入图片描述

统一获取缓存的方法

/*** 统一获取缓存数据** @param key* @return*/public String getRedisByKey(String key) {//计数stringRedisTemplate.opsForValue().increment(key + ":incr", 1);//5秒过期stringRedisTemplate.expire(key + ":incr", 10, TimeUnit.SECONDS);String count = stringRedisTemplate.opsForValue().get(key + ":incr");if (count != null && Integer.valueOf(count) > 2) {if (map.get(key) != null) {System.out.println("命中热点key....");return getCacheValue(key);}//2写死,表示5秒内get超过2次,定义为热点keymap.put(key, "true");if (stringRedisTemplate.getExpire(key, TimeUnit.SECONDS) < 10) {//自动延期System.out.println("自动延期");stringRedisTemplate.expire(key, 20, TimeUnit.SECONDS);}} else {map.remove(key);String result = stringRedisTemplate.opsForValue().get(key);if (result == null) {String value = a(key);setRedisByKey(key, value, 20L);return value;}System.out.println("直接走redis");return result;}return getCacheValue(key);}

前面是进行简单的计数法来保存这个热点key,如果命中热点key直接读本地缓存,否则读redis,没有的话再去读DB。

重点

如果是热点key的话,那么就会去判断它过期时间,如果不够的话会自动给它进行续期。

优化

  • 比如说热点key的统计方式,这里只是简单的redis+1,如果高级一点就是时间滑窗统计热点key
  • 这里是封装redistemplate查询的方案,比较好的是有一个特有的分布式集群来收集这些redis查询,redis key过期、设置、删除操作等等,会更好。
  • 在删除热点key map那里也是需要再优化的,就是如果说重新这个key在接下来的时间内不那么火热,那么剔除map对应的key。

所有代码

import com.google.common.cache.CacheBuilder;
import com.google.common.cache.CacheLoader;
import com.google.common.cache.LoadingCache;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.stereotype.Component;import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;@Component
public class RedisManagement {@Autowiredprivate StringRedisTemplate stringRedisTemplate;ConcurrentHashMap<String, String> map = new ConcurrentHashMap<>();private LoadingCache<String, String> graphs = CacheBuilder.newBuilder().maximumSize(1000).expireAfterWrite(1, TimeUnit.HOURS).refreshAfterWrite(1, TimeUnit.HOURS).build(new CacheLoader<String, String>() {@Overridepublic String load(String key) {return a(key);}});private String getCacheValue(String key) {String result;String flag = stringRedisTemplate.opsForValue().get(key + ":flag");try {System.out.println("走本地缓存");result = graphs.get(key);} catch (ExecutionException e) {System.out.println("出现报错:" + e);return null;}//不为空还有已经删除状态if (flag != null && "1".equals(flag)) {//更新本地缓存的graphs.refresh(key);//设置删除标识为未删除stringRedisTemplate.opsForValue().set(key + ":flag", "0");}return result;}/*** 统一设置缓存** @param key* @param value* @return*/public void setRedisByKey(String key, String value, long time) {//设置删除标识为未删除stringRedisTemplate.opsForValue().set(key + ":flag", "0");stringRedisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);}/*** 统一删除缓存** @param key* @return*/public Boolean delRedisByKey(String key) {//设置删除标识为删除stringRedisTemplate.opsForValue().set(key + ":flag", "1");return stringRedisTemplate.delete(key);}/*** 统一获取缓存数据** @param key* @return*/public String getRedisByKey(String key) {//计数stringRedisTemplate.opsForValue().increment(key + ":incr", 1);//5秒过期stringRedisTemplate.expire(key + ":incr", 10, TimeUnit.SECONDS);String count = stringRedisTemplate.opsForValue().get(key + ":incr");if (count != null && Integer.valueOf(count) > 2) {if (map.get(key) != null) {System.out.println("命中热点key....");return getCacheValue(key);}//2写死,表示5秒内get超过2次,定义为热点keymap.put(key, "true");if (stringRedisTemplate.getExpire(key, TimeUnit.SECONDS) < 10) {//自动延期System.out.println("自动延期");stringRedisTemplate.expire(key, 20, TimeUnit.SECONDS);}} else {map.remove(key);String result = stringRedisTemplate.opsForValue().get(key);if (result == null) {String value = a(key);setRedisByKey(key, value, 20L);return value;}System.out.println("直接走redis");return result;}return getCacheValue(key);}/*** 初始化本地缓存数据** @param key* @return*/private String a(String key) {System.out.println("查db");//执行不同逻辑if (key.startsWith("activity")) {//查数据库return "activity";} else if (key.startsWith("content")) {//查数据库return "content";} else {return "haha";}}}

这篇关于参照有赞TMC框架原理简单实现多级缓存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/200355

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三