04_beep第一个相对完整的MISC驱动实践编写

2023-10-13 03:08

本文主要是介绍04_beep第一个相对完整的MISC驱动实践编写,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

源码

/*
* @Descripttion: 基于杂项设备的蜂鸣器驱动
*/
#include <linux/init.h> //初始化头文件
#include <linux/module.h> //最基本的文件, 支持动态添加和卸载模块。
#include <linux/miscdevice.h> //包含了 miscdevice 结构的定义及相关的操作函数。
#include <linux/fs.h> //文件系统头文件, 定义文件表结构(file,buffer_head,m_inode 等)
#include <linux/uaccess.h> //包含了 copy_to_user、 copy_from_user 等内核访问用户//进程内存地址的函数定义。
#include <linux/io.h> //包含了 ioremap、 iowrite 等内核访问 IO 内存等函数的定义。
#include <linux/kernel.h> //驱动要写入内核, 与内核相关的头文件#define GPIO5_DR 0x020AC000 //蜂鸣器物理地址, 通过查看原理图得知unsigned int *vir_gpio5_dr; //存放映射完的虚拟地址的首地址/**
* @name: misc_read
* @test: 从设备中读取数据, 当用户层调用函数 read 时, 对应的, 内核驱动就会调用这个函数。
* @msg:
* @param {structfile} *file file 结构体
* @param {char__user} *ubuf 这是对应用户层的 read 函数的第二个参数 void *buf
* @param {size_t} size 对应应用层的 read 函数的第三个参数
* @param {loff_t} *loff_t 这是用于存放文件的偏移量的, 回想一下系统编程时, 读写文件的操
作都会使偏移量往后移。
* @return {*} 当返回正数时, 内核会把值传给应用程序的返回值。 一般的, 调用成功会返回成功
读取的字节数。
如果返回负数, 内核就会认为这是错误, 应用程序返回-1
*/
ssize_t misc_read (struct file *file, char __user *ubuf, size_t size, loff_t *loff_t)
{printk("misc_read\n");return 0;
}/**
* @name: misc_write
* @test: 往设备写入数据, 当用户层调用函数 write 时, 对应的, 内核驱动就会调用这个函数。
* @msg:
* @param {structfile} * filefile 结构体
* @param {constchar__user} *ubuf 这是对应用户层的 write 函数的第二个参数const void *buf
* @param {size_t} size 对应用户层的 write 函数的第三个参数 count。
* @param {loff_t} *loff_t 这是用于存放文件的偏移量的, 回想一下系统编程时, 读写文件的操
作都会使偏移量往后移。
* @return {*} 当返回正数时, 内核会把值传给应用程序的返回值。 一般的, 调用成功会返回成功
读取的字节数。
如果返回负数, 内核就会认为这是错误, 应用程序返回-1。
*/
ssize_t misc_write (struct file *file, const char __user *ubuf, size_t size, loff_t *loff_t)
{/*应用程序传入数据到内核空间, 然后控制蜂鸣器的逻辑, 在此添加*/// kbuf 保存的是从应用层读取到的数据char kbuf[64] = {0};// copy_from_user 从应用层传递数据给内核层if(copy_from_user(kbuf,ubuf,size)!= 0){// copy_from_user 传递失败打印printk("copy_from_user error \n ");return -1;}//打印传递进内核的数据printk("kbuf is %d\n ",kbuf[0]);if(kbuf[0]==1) //传入数据为 1 , 蜂鸣器响{*vir_gpio5_dr |= (1<<4);}else if(kbuf[0]==0) //传入数据为 0, 蜂鸣器关闭*vir_gpio5_dr &= ~(1<<4);return 0;
}/**
* @name: misc_release
* @test: 当设备文件被关闭时内核会调用这个操作, 当然这也可以不实现, 函数默认为 NULL。 关
闭设备永远成功。
* @msg:
* @param {structinode} *inode 设备节点
* @param {structfile} *file filefile 结构体
* @return {0}
*/
int misc_release(struct inode *inode,struct file *file){printk("hello misc_relaease bye bye \n ");return 0;
}/**
* @name: misc_open
* @test: 在操作设备前必须先调用 open 函数打开文件, 可以干一些需要的初始化操作。
* @msg:
* @param {structinode} *inode 设备节点
* @param {structfile} *file filefile 结构体
* @return {0}
*/
int misc_open(struct inode *inode,struct file *file){printk("hello misc_open\n ");return 0;
}//文件操作集
struct file_operations misc_fops={.owner = THIS_MODULE,.open = misc_open,.release = misc_release,.read = misc_read,.write = misc_write,
};//miscdevice 结构体
struct miscdevice misc_dev = {.minor = MISC_DYNAMIC_MINOR,.name = "hello_misc",.fops = &misc_fops,
};static int misc_init(void)
{int ret;//注册杂项设备ret = misc_register(&misc_dev);if(ret < 0){printk("misc registe is error \n");}printk("misc registe is succeed \n");//将物理地址转化为虚拟地址vir_gpio5_dr = ioremap(GPIO5_DR,4);if(vir_gpio5_dr == NULL){printk("GPIO5_DR ioremap is error \n");return EBUSY;}printk("GPIO5_DR ioremap is ok \n");return 0;
}static void misc_exit(void){//卸载杂项设备misc_deregister(&misc_dev);//iounmap(vir_gpio5_dr);printk(" misc goodbye! \n");
}module_init(misc_init);
module_exit(misc_exit);
MODULE_LICENSE("GPL");

编写Makefile

obj-m += beep.o #先写生成的中间文件的名字是什么, -m 的意思是把我们的驱动编译成模块
KDIR:=/home/myzr/my-work/02_source/linux-4.1.15/
PWD?=$(shell pwd) #获取当前目录的变量
all:make -C $(KDIR) M=$(PWD) modules #make 会进入内核源码的路径, 然后把当前路径下的代码编译成模块

输入make编译

把beep.ko拷贝到共享目录

sudo cp beep.ko /home/nfs/

编写应用程序app.c

app.c源码

#include <stdio.h>#include <sys/types.h>#include <sys/stat.h>#include <fcntl.h>#include <unistd.h>int main(int argc,char *argv[]){int fd;char buf[64] = {0};//定义 buf 缓存//打开设备节点fd = open("/dev/hello_misc",O_RDWR);if(fd < 0){//打开设备节点失败perror("open error \n");return fd;}// atoi()将字符串转为整型, 这里将第一个参数转化为整型后, 存放在 buf[0]中buf[0] = atoi(argv[1]);//把缓冲区数据写入文件中write(fd,buf,sizeof(buf));printf("buf is %d\n",buf[0]);close(fd);return 0;}

输入arm-none-linux-gnueabi-gcc app.c -o app -static编译app

把应用程序app拷贝到共享目录

sudo cp app /home/nfs/

在开发板上加载驱动模块

insmod beep.ko

驱动加载成功后,输入以下命令,查看注册的设备节点是否存在,如下图所示,设备节点存在。

ls /dev/h*

执行应用程序,可以看到D4灯点亮

./app 1

执行应用程序,可以看到D4灯熄灭

./app 0

卸载驱动模块

rmmod beep

ioremap地址查找方法

查看原理图,发现是SNVS_TAMPER4连接到蜂鸣器控制引脚,在IMX6ULL参考手册(i.MX 6ULL Applications Processor Reference Manual)里面搜索SNVS_TAMPER4,找到IOMUXC_SNVS_SW_MUX_CTL_PAD_SNVS_TAMPER4寄存器

 

SNVS_TAMPER4引脚和GPIO5_04复用,在参考手册里面搜索GPIO5_DR(数据寄存器)

这篇关于04_beep第一个相对完整的MISC驱动实践编写的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/200342

相关文章

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python极速搭建局域网文件共享服务器完整指南

《Python极速搭建局域网文件共享服务器完整指南》在办公室或家庭局域网中快速共享文件时,许多人会选择第三方工具或云存储服务,但这些方案往往存在隐私泄露风险或需要复杂配置,下面我们就来看看如何使用Py... 目录一、android基础版:HTTP文件共享的魔法命令1. 一行代码启动HTTP服务器2. 关键参

OpenCV在Java中的完整集成指南分享

《OpenCV在Java中的完整集成指南分享》本文详解了在Java中集成OpenCV的方法,涵盖jar包导入、dll配置、JNI路径设置及跨平台兼容性处理,提供了图像处理、特征检测、实时视频分析等应用... 目录1. OpenCV简介与应用领域1.1 OpenCV的诞生与发展1.2 OpenCV的应用领域2

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Linux之platform平台设备驱动详解

《Linux之platform平台设备驱动详解》Linux设备驱动模型中,Platform总线作为虚拟总线统一管理无物理总线依赖的嵌入式设备,通过platform_driver和platform_de... 目录platform驱动注册platform设备注册设备树Platform驱动和设备的关系总结在 l

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1