NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示)

本文主要是介绍NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示)|2020年

img

Fig. 1:通过场景的一些图片作为输入,我们提出一种优化连续的 5D 神经辐射场表示的方法

摘要

  • 我们提出一种方法,使用较少的视图(view)作为输入,对一个连续、隐含的体积场景函数(volumetric scene function)进行优化,从而实现了关于复杂场景的新视图合成的最先进的结果。
  • 我们的算法用全连接深度网络来表示场景,其输入是 5D 坐标空间位置 (x,y,z) 视角方向(viewing direction) (θ,ϕ);其输出是体积密度(volume density)和该空间位置上发射出来的辐射亮度(radiance,与视角相关)
  • 通过沿着相机光线(camera rays)获取 5D 坐标,使用经典的立体渲染(volume rendering)技术,我们将输出的颜色和密度投影到图像上,从而实现视图合成
  • 由于立体渲染是可导的,神经网络的优化,只需要提供一系列确定相机位姿的图像

1 介绍

  • 我们的工作,用新的方法解决了在**视图合成(view synthesis)**中长期以来的问题。

    • 我们直接优化一个连续的 5D 场景表示(scene representation)参数(网络权重),根据捕获到图像,最小化渲染误差。
    • 我们把静态场景表示为连续的 5D 函数(指输入是 5D ),输出在各个空间点 (x,y,z)(x,y,z) 和各个方向 (θ,ϕ)(θ,ϕ) 发射出来的辐射亮度密度(就像可导的透明度,控制穿过 (x,y,z)(x,y,z) 的射线,可以累加多少辐射亮度)
    • 我们的方法是优化一个深度全连接的神经网络没有用到卷积层,全连接神经网络又称多层感知器(MLP);我们用这个 MLP 来表示这样的函数:根据一个 5D 坐标 (x,y,z,θ,ϕ)(x,y,z,θ,ϕ),回归输出一个体积密度视角相关的 RGB 颜色
  • 整个流水线如下图所示:img

Fig. 2: 神经辐射场场景表示可导的渲染流程的概述。我们的图像合成,通过(图 a)沿着相机光线采样出 5D 坐标(位置和视角方向);(图 b)把位置喂给 MLP,生成颜色和体积密度;(图 c)使用立体渲染技术,利用这些值得到一张图像。由于这个渲染函数是可导的,因此我们可以最小化合成图像真实观察图像的残差,进行场景表示的优化。
  • 为了根据某一视角(viewpoint),渲染出这个神经辐射场(Neural Radiance Field, NeRF),我们:

​ 1.使相机光线穿过场景,生成一组 3D 采样点

​ 2.让这些 3D 点和对应的 3D 视角方向作为神经网络的输入,生成一组颜色密度

​ 3.使用经典的立体渲染技术,累加这些颜色和密度,得到 2D 图像

  • 由于以上过程是可导的,我们可以使用梯度下降来优化模型,最小化观测图像模型回归计算的图像之间的误差。
    • 这可以鼓励神经网络学习的场景模型具有一致性(coherent),即在包含场景内容的位置,可以得到较大的体积密度和准确的颜色。
  • 我们发现对于复杂的场景,用简单的方法优化 NeRF 效果不理想
    • 很难得到高分辨率的收敛结果;
    • 也不能高效利用相机光线所需的采样点。
  • 于是,我们这样解决以上问题:
    • 用一个位置编码(positional encoding)对输入 5D 坐标进行变换,使得 MLP 可以表示高频函数;
    • 提出层次化的采样流程(hierarchical sampling procedure),减少所需的采样点。
  • 我们的方法保留了体积表示的优点:
    • 可以表示复杂的几何和外观;
    • 可以通过投影图像进行梯度下降的优化。
  • 重要的是,我们的方法克服了体积表示的一个关键问题:在表示高分辨率的复杂场景时,离散的体素网格的存储空间成本非常高
  • 总结下来,本文的贡献如下:
    • 包含复杂几何和材质的连续场景的表示方法:使用参数化为 MLP 的 5D 神经辐射场

这篇关于NeRF:Representing Scenes as Neural Radiance Fields for viem Synthesis(用于视图合成的神经辐射场的场景表示)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/199368

相关文章

防止Linux rm命令误操作的多场景防护方案与实践

《防止Linuxrm命令误操作的多场景防护方案与实践》在Linux系统中,rm命令是删除文件和目录的高效工具,但一旦误操作,如执行rm-rf/或rm-rf/*,极易导致系统数据灾难,本文针对不同场景... 目录引言理解 rm 命令及误操作风险rm 命令基础常见误操作案例防护方案使用 rm编程 别名及安全删除

Spring Security 前后端分离场景下的会话并发管理

《SpringSecurity前后端分离场景下的会话并发管理》本文介绍了在前后端分离架构下实现SpringSecurity会话并发管理的问题,传统Web开发中只需简单配置sessionManage... 目录背景分析传统 web 开发中的 sessionManagement 入口ConcurrentSess

99%的人都选错了! 路由器WiFi双频合一还是分开好的专业解析与适用场景探讨

《99%的人都选错了!路由器WiFi双频合一还是分开好的专业解析与适用场景探讨》关于双频路由器的“双频合一”与“分开使用”两种模式,用户往往存在诸多疑问,本文将从多个维度深入探讨这两种模式的优缺点,... 在如今“没有WiFi就等于与世隔绝”的时代,越来越多家庭、办公室都开始配置双频无线路由器。但你有没有注

深入解析Java NIO在高并发场景下的性能优化实践指南

《深入解析JavaNIO在高并发场景下的性能优化实践指南》随着互联网业务不断演进,对高并发、低延时网络服务的需求日益增长,本文将深入解析JavaNIO在高并发场景下的性能优化方法,希望对大家有所帮助... 目录简介一、技术背景与应用场景二、核心原理深入分析2.1 Selector多路复用2.2 Buffer

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

Java Stream流之GroupBy的用法及应用场景

《JavaStream流之GroupBy的用法及应用场景》本教程将详细介绍如何在Java中使用Stream流的groupby方法,包括基本用法和一些常见的实际应用场景,感兴趣的朋友一起看看吧... 目录Java Stream流之GroupBy的用法1. 前言2. 基础概念什么是 GroupBy?Stream

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分