2018“达观杯” TF-IDF实践

2023-10-12 22:48
文章标签 实践 tf 2018 idf 达观

本文主要是介绍2018“达观杯” TF-IDF实践,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

TF-IDF(term frequency–inverse document frequency)

TF-IDF是一种用于资讯检索与资讯探勘的常用加权技术。TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度。字词的重要性随著它在文件中出现的次数成正比增加,但同时会随著它在语料库中出现的频率成反比下降。TF-IDF加权的各种形式常被搜寻引擎应用,作为文件与用户查询之间相关程度的度量或评级。除了TF-IDF以外,因特网上的搜寻引擎还会使用基于连结分析的评级方法,以确定文件在搜寻结果中出现的顺序。

在文本挖掘中,要对文本库分词,而分词后需要对个每个分词计算它的权重,而这个权重可以使用TF-IDF计算。

TF(term frequency)

TF就是分词出现的频率:该分词在该文档中出现的频率,算法是:(该分词在该文档出现的次数)/ (该文档分词的总数),这个值越大表示这个词越重要,即权重就越大。

例如:一篇文档分词后,总共有500个分词,而分词”Hello”出现的次数是20次,则TF值是: tf =20/500=2/50=0.04

IDF(inversedocument frequency)

IDF逆向文件频率,一个文档库中,一个分词出现在的文档数越少越能和其它文档区别开来。算法是:log((总文档数/出现该分词的文档数)+0.01) ;(注加上0.01是为了防止log计算返回值为0)。

例如:一个文档库中总共有50篇文档,2篇文档中出现过“Hello”分词,则idf是: Idf = log(50/2 + 0.01) = log(25.01)=1.39811369 TF-IDF结合计算就是 tfidf,比如上面的“Hello”分词例子中: TF-IDF = tf idf = (20/500)* log(50/2 + 0.01)= 0.04*1.39811369=0.0559245476


sklearn-API

Examples:

from sklearn.feature_extraction.text import TfidfVectorizer
corpus = ['This is the first document.','This document is the second document.','And this is the third one.','Is this the first document?',
]
vectorizer = TfidfVectorizer()
X = vectorizer.fit_transform(corpus)
print(vectorizer.get_feature_names())
print(X.shape)
print(X)
OUTPUT:
['and', 'document', 'first', 'is', 'one', 'second', 'the', 'third', 'this']
(4, 9)(0, 8)	0.38408524091481483(0, 3)	0.38408524091481483(0, 6)	0.38408524091481483(0, 2)	0.5802858236844359(0, 1)	0.46979138557992045(1, 8)	0.281088674033753(1, 3)	0.281088674033753(1, 6)	0.281088674033753(1, 1)	0.6876235979836938(1, 5)	0.5386476208856763(2, 8)	0.267103787642168(2, 3)	0.267103787642168(2, 6)	0.267103787642168(2, 0)	0.511848512707169(2, 7)	0.511848512707169(2, 4)	0.511848512707169(3, 8)	0.38408524091481483(3, 3)	0.38408524091481483(3, 6)	0.38408524091481483(3, 2)	0.5802858236844359(3, 1)	0.46979138557992045

Task2.1

代码示例:将属性 “article” 转化为 tf-idf 特征矩阵,调用的sklearn接口,我只读取了训练集前500条数据进行尝试以高效地进行代码测试。

train_data = pd.read_csv('../dataSet/train_set.csv', encoding='utf-8', nrows=500, usecols=[1])
train_data['article_list'] = train_data['article'].map(lambda index: index.split(' '))
train_data['length'] = train_data['article_list'].map(lambda index: len(index))
print(train_data['length'].max())# calc length of set[all words]
temp = set([])
train_data['max_name'] = train_data['article_list'].map(lambda index: set(index))
for i in range(len(train_data)):temp = temp | train_data.loc[i, 'max_name']
print(len(temp))vectorizer = TfidfVectorizer(encoding='utf-8', )
result = vectorizer.fit_transform(train_data['article'])
print(type(result))    # <class 'scipy.sparse.csr.csr_matrix'>
result = result.A      # convert csr_matrix to ndarray matrix
print(result.shape)
print(result)          # features matrix

样例输出:

8453
4484
<class 'scipy.sparse.csr.csr_matrix'>
(500, 4484)
[[0.         0.         0.         ... 0.         0.         0.        ][0.00819422 0.         0.         ... 0.         0.         0.        ][0.00591508 0.         0.         ... 0.         0.         0.        ]...[0.01155529 0.         0.         ... 0.         0.         0.        ][0.03134187 0.         0.         ... 0.         0.         0.0174317 ][0.         0.         0.         ... 0.         0.         0.        ]]

结果分析:

  1. article属性中包含相同的字,即有重复数字。
  2. TfidfVectorizer.fit_transform 输出类型为 ‘scipy.sparse.csr.csr_matrix’
  3. 可通过 ‘.A’ 将 ‘scipy.sparse.csr.csr_matrix’ 转化为 ‘ndarray’ 类型
  4. 最后地输出即为每个样本的 tf-idf 特征值

这篇关于2018“达观杯” TF-IDF实践的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/198965

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

springboot项目中整合高德地图的实践

《springboot项目中整合高德地图的实践》:本文主要介绍springboot项目中整合高德地图的实践,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一:高德开放平台的使用二:创建数据库(我是用的是mysql)三:Springboot所需的依赖(根据你的需求再

SpringBoot3应用中集成和使用Spring Retry的实践记录

《SpringBoot3应用中集成和使用SpringRetry的实践记录》SpringRetry为SpringBoot3提供重试机制,支持注解和编程式两种方式,可配置重试策略与监听器,适用于临时性故... 目录1. 简介2. 环境准备3. 使用方式3.1 注解方式 基础使用自定义重试策略失败恢复机制注意事项

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

SQLite3命令行工具最佳实践指南

《SQLite3命令行工具最佳实践指南》SQLite3是轻量级嵌入式数据库,无需服务器支持,具备ACID事务与跨平台特性,适用于小型项目和学习,sqlite3.exe作为命令行工具,支持SQL执行、数... 目录1. SQLite3简介和特点2. sqlite3.exe使用概述2.1 sqlite3.exe

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Springboot整合Redis主从实践

《Springboot整合Redis主从实践》:本文主要介绍Springboot整合Redis主从的实例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言原配置现配置测试LettuceConnectionFactory.setShareNativeConnect

java中Optional的核心用法和最佳实践

《java中Optional的核心用法和最佳实践》Java8中Optional用于处理可能为null的值,减少空指针异常,:本文主要介绍java中Optional核心用法和最佳实践的相关资料,文中... 目录前言1. 创建 Optional 对象1.1 常规创建方式2. 访问 Optional 中的值2.1

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可