c++视觉处理---仿射变换和二维旋转变换矩阵的函数

2023-10-12 05:12

本文主要是介绍c++视觉处理---仿射变换和二维旋转变换矩阵的函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

仿射变换cv::warpAffine

cv::warpAffine 是OpenCV中用于执行仿射变换的函数。仿射变换是一种线性变换,可用于执行平移、旋转、缩放和剪切等操作。下面是 cv::warpAffine 函数的基本用法:

cv::warpAffine(src, dst, M, dsize, flags, borderMode, borderValue);
  • src: 输入图像。
  • dst: 输出图像,用于存储仿射变换后的结果。
  • M: 2x3仿射变换矩阵,包含变换的参数。
  • dsize: 输出图像的尺寸。
  • flags: 插值方法,通常使用
    • cv::INTER_LINEAR 进行双线性插值。
    • cv::INTER_NEAREST 最近邻插值
    • cv::INTER_AREA 区域插值
    • cv::INTER_CUBIC 三次样条插值
    • cv::INTER_LANCZOS4 Lanczos插值
    • cv::CV_WARP_FILL_OUTLIERS 填充所有输出图像的象素。如果部分象素落在输入图像的边界 外,那么它们的值设定为 fillval
    • cv::CV_WARP_INVERSE_MAP 表示 M为输出图像到输入图像的反变换。因此可以直接用来做 象素插值。否则,warpAffine函数从M矩阵得到反变换
  • borderMode: 边界模式,可选参数,定义当像素越出图像边界时的处理方式,通常使用 cv::BORDER_CONSTANTcv::BORDER_REPLICATE
  • borderValue: 当 borderModecv::BORDER_CONSTANT 时使用,用于指定图像边界外的像素值。

通过提供仿射变换矩阵 M,您可以指定图像的变换方式,包括平移、旋转、缩放和剪切等。然后,cv::warpAffine 函数会根据给定的变换参数将输入图像进行变换,输出结果保存在 dst 中。

以下是一个简单的示例,演示如何使用 cv::warpAffine 进行图像的平移操作:

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("1.jpg", cv::IMREAD_COLOR);if (image.empty()) {std::cerr << "无法加载图像" << std::endl;return -1;}// 定义仿射变换矩阵(平移操作)cv::Mat warpMatrix = (cv::Mat_<double>(2, 3) << 1, 0, 50, 0, 1, 30);cv::Mat result;// 应用仿射变换cv::warpAffine(image, result, warpMatrix, image.size());cv::imshow("原始图像", image);cv::imshow("仿射变换后的图像", result);cv::waitKey(0);return 0;
}

在这个示例中,我们定义了一个仿射变换矩阵 warpMatrix,该矩阵包含平移操作的参数。然后,我们使用 cv::warpAffine 函数将变换应用于原始图像,生成了变换后的结果。您可以根据需要修改 warpMatrix 中的值以实现不同的仿射变换效果。
在这里插入图片描述

二维旋转变换矩阵的函数:cv::getRotationMatrix2D

cv::getRotationMatrix2D 是OpenCV中用于获取二维旋转变换矩阵的函数。这个函数用于构造一个仿射变换矩阵,该矩阵用于执行二维图像的旋转操作。下面是 cv::getRotationMatrix2D 函数的基本用法:

cv::Mat cv::getRotationMatrix2D(cv::Point2f center, double angle, double scale);
  • center: 旋转中心的坐标,通常是旋转图像的中心点。
  • angle: 旋转的角度(以度为单位)。
  • scale: 缩放因子,通常设置为1.0。

函数返回一个2x3的仿射变换矩阵,该矩阵包含了旋转和缩放的参数。

以下是一个示例,演示如何使用 cv::getRotationMatrix2D 函数构造旋转变换矩阵,然后应用该变换矩阵来旋转图像:

#include <opencv2/opencv.hpp>int main() {cv::Mat image = cv::imread("1.jpg", cv::IMREAD_COLOR);if (image.empty()) {std::cerr << "无法加载图像" << std::endl;return -1;}// 旋转中心坐标cv::Point2f center(image.cols / 2.0, image.rows / 2.0);// 旋转角度(以度为单位)double angle = 30;// 缩放因子double scale = 1.0;// 获取旋转变换矩阵cv::Mat rotationMatrix = cv::getRotationMatrix2D(center, angle, scale);cv::Mat result;// 应用仿射变换cv::warpAffine(image, result, rotationMatrix, image.size());cv::imshow("原始图像", image);cv::imshow("旋转后的图像", result);cv::waitKey(0);return 0;
}

在这个示例中,我们使用 cv::getRotationMatrix2D 函数获取旋转变换矩阵,然后将该变换矩阵应用于原始图像,以实现旋转效果。您可以根据需要调整 centeranglescale 参数来执行不同的旋转和缩放操作。

在这里插入图片描述

综合案例

#include <opencv2/opencv.hpp>
#include <iostream>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>using namespace std;
using namespace cv;
#include <iostream>
#include <fstream>
using namespace cv; //包含cv命名空间
#include <opencv2/core/core.hpp>
#define WINDOW_NAME1 " 【原始图窗口】 " //为窗口标题定义的宏
#define WINDOW_NAME2 " 【经过 Warp后的图像】 " //为窗口标题定义的宏
#define WINDOW_NAME3 " 【经过 Warp和 Rotate后的图像】 " //为窗口标题定
static void ShowHelpText();
/// 【main()函数】-------------------------- -
// 描述: 控制台应用程序的入口函数, 我们的程序从这里开始执行
int main()
{//【0】改变 console字体颜色system("color 1A");//【0】显示欢迎和帮助文字ShowHelpText();//【1】参数准备//定义两组点, 代表两个三角形Point2f srcTriangle[3];Point2f dstTriangle[3];//定义一些 Mat变量Mat rotMat(2, 3, CV_32FC1);Mat warpMat(2, 3, CV_32FC1);Mat srcImage, dstImage_warp, dstImage_warp_rotate;//【2】加载源图像并作一些初始化srcImage = imread("1.jpg", 1);if (!srcImage.data) { printf("读取图片错误, 请确定目录下是否有imread函数指定的图片存在~! \n"); return false; }// 设置目标图像的大小和类型与源图像一致dstImage_warp = Mat::zeros(srcImage.rows, srcImage.cols, srcImage.type());//【3】设置源图像和目标图像上的三组点以计算仿射变换srcTriangle[0] = Point2f(0, 0);srcTriangle[1] = Point2f(static_cast<float>(srcImage.cols - 1), 0);srcTriangle[2] = Point2f(0, static_cast<float>(srcImage.rows - 1));dstTriangle[0] = Point2f(static_cast<float>(srcImage.cols * 0.0), static_cast<float>(srcImage.rows * 0.33));dstTriangle[1] = Point2f(static_cast<float>(srcImage.cols * 0.65), static_cast<float>(srcImage.rows * 0.35));dstTriangle[2] = Point2f(static_cast<float>(srcImage.cols * 0.15), static_cast<float>(srcImage.rows * 0.6));//【4】求得仿射变换warpMat = getAffineTransform(srcTriangle, dstTriangle);//【5】对源图像应用刚刚求得的仿射变换warpAffine(srcImage, dstImage_warp, warpMat, dstImage_warp.size());//【6】对图像进行缩放后再旋转// 计算绕图像中点顺时针旋转50度缩放因子为0.6的旋转矩阵Point center = Point(dstImage_warp.cols / 2, dstImage_warp.rows / 2);double angle = -30.0;double scale = 0.8;// 通过上面的旋转细节信息求得旋转矩阵rotMat = getRotationMatrix2D(center, angle, scale);// 旋转已缩放后的图像warpAffine(dstImage_warp, dstImage_warp_rotate, rotMat, dstImage_warp.size());//【7】显示结果imshow(WINDOW_NAME1, srcImage);imshow(WINDOW_NAME2, dstImage_warp);imshow(WINDOW_NAME3, dstImage_warp_rotate);// 等待用户按任意按键退出程序waitKey(0);return 0;
}
//一 【ShowHelpText()函数】---------------------- -
// 描述: 输出一些帮助信息
static void ShowHelpText()
{//输出一些帮助信息printf("\n\n\n\t欢迎来到【仿射变换】示例程序~ \n\n");//printf("\t当前使用的OpenCV版本为 OpenCV "CV_VERSION); 
}

在这里插入图片描述

这篇关于c++视觉处理---仿射变换和二维旋转变换矩阵的函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/193503

相关文章

Kotlin运算符重载函数及作用场景

《Kotlin运算符重载函数及作用场景》在Kotlin里,运算符重载函数允许为自定义类型重新定义现有的运算符(如+-…)行为,从而让自定义类型能像内置类型那样使用运算符,本文给大家介绍Kotlin运算... 目录基本语法作用场景类对象数据类型接口注意事项在 Kotlin 里,运算符重载函数允许为自定义类型重

一文带你搞懂Redis Stream的6种消息处理模式

《一文带你搞懂RedisStream的6种消息处理模式》Redis5.0版本引入的Stream数据类型,为Redis生态带来了强大而灵活的消息队列功能,本文将为大家详细介绍RedisStream的6... 目录1. 简单消费模式(Simple Consumption)基本概念核心命令实现示例使用场景优缺点2

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

在 Spring Boot 中实现异常处理最佳实践

《在SpringBoot中实现异常处理最佳实践》本文介绍如何在SpringBoot中实现异常处理,涵盖核心概念、实现方法、与先前查询的集成、性能分析、常见问题和最佳实践,感兴趣的朋友一起看看吧... 目录一、Spring Boot 异常处理的背景与核心概念1.1 为什么需要异常处理?1.2 Spring B

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-