H265(HEVC) nal 单元头介绍及rtp发送中的fu分组发送详解

2023-10-12 03:10

本文主要是介绍H265(HEVC) nal 单元头介绍及rtp发送中的fu分组发送详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        首先来介绍下h265(HEVC)nal单元头,与h264的nal层相比,h265的nal unit header有两个字节构成,如下图所示:

从图中可以看出hHEVC的nal包结构与h264有明显的不同,hevc加入了nal所在的时间层的ID,取去除了nal_ref_idc,此信息合并到了naltype中,通常情况下F为0,layerid为0,TID为1。

        nal单元的类型有如下几种:

     

 enum NalUnitType
{NAL_UNIT_CODED_SLICE_TRAIL_N = 0,   // 0NAL_UNIT_CODED_SLICE_TRAIL_R,   // 1NAL_UNIT_CODED_SLICE_TSA_N,     // 2NAL_UNIT_CODED_SLICE_TLA,       // 3   // Current name in the spec: TSA_RNAL_UNIT_CODED_SLICE_STSA_N,    // 4NAL_UNIT_CODED_SLICE_STSA_R,    // 5NAL_UNIT_CODED_SLICE_RADL_N,    // 6NAL_UNIT_CODED_SLICE_DLP,       // 7 // Current name in the spec: RADL_RNAL_UNIT_CODED_SLICE_RASL_N,    // 8NAL_UNIT_CODED_SLICE_TFD,       // 9 // Current name in the spec: RASL_RNAL_UNIT_RESERVED_10,NAL_UNIT_RESERVED_11,NAL_UNIT_RESERVED_12,NAL_UNIT_RESERVED_13,NAL_UNIT_RESERVED_14,NAL_UNIT_RESERVED_15, NAL_UNIT_CODED_SLICE_BLA,       // 16   // Current name in the spec: BLA_W_LP
NAL_UNIT_CODED_SLICE_BLA,       // 16   // Current name in the spec: BLA_W_LPNAL_UNIT_CODED_SLICE_BLANT,     // 17   // Current name in the spec: BLA_W_DLPNAL_UNIT_CODED_SLICE_BLA_N_LP,  // 18NAL_UNIT_CODED_SLICE_IDR,       // 19  // Current name in the spec: IDR_W_DLPNAL_UNIT_CODED_SLICE_IDR_N_LP,  // 20NAL_UNIT_CODED_SLICE_CRA,       // 21NAL_UNIT_RESERVED_22,NAL_UNIT_RESERVED_23,NAL_UNIT_RESERVED_24,NAL_UNIT_RESERVED_25,NAL_UNIT_RESERVED_26,NAL_UNIT_RESERVED_27,NAL_UNIT_RESERVED_28,NAL_UNIT_RESERVED_29,NAL_UNIT_RESERVED_30,NAL_UNIT_RESERVED_31,NAL_UNIT_VPS,                   // 32NAL_UNIT_SPS,                   // 33NAL_UNIT_PPS,                   // 34NAL_UNIT_ACCESS_UNIT_DELIMITER, // 35NAL_UNIT_EOS,                   // 36NAL_UNIT_EOB,                   // 37NAL_UNIT_FILLER_DATA,           // 38NAL_UNIT_SEI,                   // 39 Prefix SEINAL_UNIT_SEI_SUFFIX,            // 40 Suffix SEINAL_UNIT_RESERVED_41,NAL_UNIT_RESERVED_42,NAL_UNIT_RESERVED_43,NAL_UNIT_RESERVED_44,NAL_UNIT_RESERVED_45,NAL_UNIT_RESERVED_46,NAL_UNIT_RESERVED_47,NAL_UNIT_UNSPECIFIED_48,NAL_UNIT_UNSPECIFIED_49,NAL_UNIT_UNSPECIFIED_50,NAL_UNIT_UNSPECIFIED_51,NAL_UNIT_UNSPECIFIED_52,NAL_UNIT_UNSPECIFIED_53,NAL_UNIT_UNSPECIFIED_54,NAL_UNIT_UNSPECIFIED_55,NAL_UNIT_UNSPECIFIED_56,NAL_UNIT_UNSPECIFIED_57,NAL_UNIT_UNSPECIFIED_58,NAL_UNIT_UNSPECIFIED_59,NAL_UNIT_UNSPECIFIED_60,NAL_UNIT_UNSPECIFIED_61,NAL_UNIT_UNSPECIFIED_62,NAL_UNIT_UNSPECIFIED_63,NAL_UNIT_INVALID,
};

下面接收下fu分组打包方式,fu分组包头格式如下:

fus包头包含了两个字节的payloadhdr,一个字节的fu header,fu header与h264一样,结构如下图,包含开始位(1b)、停止位(1b)、futype(6b)

paylodhdr两个自己的赋值,其实就是把hevc帧数据的nal unit header的naltype替换为49即可,下面是从ffmpeg源码中截取出来的fu打包方式代码片段:

static void nal_send(AVFormatContext *ctx, const uint8_t *buf, int len, int last_packet_of_frame)
{RTPMuxContext *rtp_ctx = ctx->priv_data;int rtp_payload_size = rtp_ctx->max_payload_size - RTP_HEVC_HEADERS_SIZE;int nal_type = (buf[0] >> 1) & 0x3F;/* send it as one single NAL unit? */if (len <= rtp_ctx->max_payload_size) //小于对定的最大值时,直接发送(最大值一般小于mtu){/* use the original NAL unit buffer and transmit it as RTP payload */ff_rtp_send_data(ctx, buf, len, last_packet_of_frame);}else //大于最大值时进行fu分组发送{/*create the HEVC payload header and transmit the buffer as fragmentation units (FU)0                   10 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+|F|   Type    |  LayerId  | TID |+-------------+-----------------+F       = 0Type    = 49 (fragmentation unit (FU))LayerId = 0TID     = 1*/rtp_ctx->buf[0] = 49 << 1;rtp_ctx->buf[1] = 1;//此处为paylaodhdr,规范赋值应该是替换hevc数据nal 的payloadhdr的type//rtp_ctx->buf[0] = (buf[0] &0x81) | (49<<1);//rtp_ctx->buf[1] = buf[1]/*create the FU header0 1 2 3 4 5 6 7+-+-+-+-+-+-+-+-+|S|E|  FuType   |+---------------+S       = variableE       = variableFuType  = NAL unit type*/rtp_ctx->buf[2] = nal_type;/* set the S bit: mark as start fragment */rtp_ctx->buf[2] |= 1 << 7;		/* pass the original NAL header *///此处要注意,当是分组的第一报数据时,应该覆盖掉前两个字节的数据,h264要覆盖前一个字节的数据,即是第一包要去除hevc帧数据的paylaodhdrbuf += 2;len -= 2;	while (len > rtp_payload_size) {/* complete and send current RTP packet */memcpy(&rtp_ctx->buf[RTP_HEVC_HEADERS_SIZE], buf, rtp_payload_size);ff_rtp_send_data(ctx, rtp_ctx->buf, rtp_ctx->max_payload_size, 0);buf += rtp_payload_size;len -= rtp_payload_size;/* reset the S bit */rtp_ctx->buf[2] &= ~(1 << 7);}/* set the E bit: mark as last fragment */rtp_ctx->buf[2] |= 1 << 6;/* complete and send last RTP packet */memcpy(&rtp_ctx->buf[RTP_HEVC_HEADERS_SIZE], buf, len);ff_rtp_send_data(ctx, rtp_ctx->buf, len + 2, last_packet_of_frame);}
}

通过rtp发送hevc视频数据,当hevc帧数据大于mtu时,应该进行fu分组发送,从上面代码流程就是对超过max_payload_size数据进行fu分组的流程,这个h264 fu-A很类似,很容易理解。

参考规范:

https://tools.ietf.org/html/draft-ietf-payload-rtp-h265-14

ffmpeg相关代码

https://www.ffmpeg.org/doxygen/2.5/rtpenc__hevc_8c_source.html

这篇关于H265(HEVC) nal 单元头介绍及rtp发送中的fu分组发送详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192808

相关文章

Mysql数据库聚簇索引与非聚簇索引举例详解

《Mysql数据库聚簇索引与非聚簇索引举例详解》在MySQL中聚簇索引和非聚簇索引是两种常见的索引结构,它们的主要区别在于数据的存储方式和索引的组织方式,:本文主要介绍Mysql数据库聚簇索引与非... 目录前言一、核心概念与本质区别二、聚簇索引(Clustered Index)1. 实现原理(以 Inno

使用python生成固定格式序号的方法详解

《使用python生成固定格式序号的方法详解》这篇文章主要为大家详细介绍了如何使用python生成固定格式序号,文中的示例代码讲解详细,具有一定的借鉴价值,有需要的小伙伴可以参考一下... 目录生成结果验证完整生成代码扩展说明1. 保存到文本文件2. 转换为jsON格式3. 处理特殊序号格式(如带圈数字)4

MySQL数据库双机热备的配置方法详解

《MySQL数据库双机热备的配置方法详解》在企业级应用中,数据库的高可用性和数据的安全性是至关重要的,MySQL作为最流行的开源关系型数据库管理系统之一,提供了多种方式来实现高可用性,其中双机热备(M... 目录1. 环境准备1.1 安装mysql1.2 配置MySQL1.2.1 主服务器配置1.2.2 从

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

MyBatis常用XML语法详解

《MyBatis常用XML语法详解》文章介绍了MyBatis常用XML语法,包括结果映射、查询语句、插入语句、更新语句、删除语句、动态SQL标签以及ehcache.xml文件的使用,感兴趣的朋友跟随小... 目录1、定义结果映射2、查询语句3、插入语句4、更新语句5、删除语句6、动态 SQL 标签7、ehc

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

k8s按需创建PV和使用PVC详解

《k8s按需创建PV和使用PVC详解》Kubernetes中,PV和PVC用于管理持久存储,StorageClass实现动态PV分配,PVC声明存储需求并绑定PV,通过kubectl验证状态,注意回收... 目录1.按需创建 PV(使用 StorageClass)创建 StorageClass2.创建 PV

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D