PE结构学习(3)_RVA转换成FOA

2023-10-12 02:40
文章标签 学习 结构 转换成 pe foa rva

本文主要是介绍PE结构学习(3)_RVA转换成FOA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

RVA转FOA

简介

PE文件有两种状态, 一种是在文件中的状态,另外一种是在内存中展开

若我们运行了一个PE文件且知道了某个全局变量的地址, 那么该如何通过这个全局变量地址来获得此变量在文件状态下的地址是什么呢?

RVA(relative Virtual Address), 又称为相对虚拟偏移,简单来说就是在内存状态下的偏移地址

FOA(File Ofseet Address), 又称为文件偏移地址, 就是在文件状态下的偏移地址

下图是PE文件在文件对齐和内存对齐状态下的映像结构图

这里文件对齐值是200,内存对齐的值是1000

内存对齐后的映像分布有个明显的拉伸

请添加图片描述


计算方法

1.求RVA的值

RVA = 全局变量在内存中的地址 - ImageBase(基址)

2.判断RVA是否位于PE头中或者内存对齐=文件对齐

如果RVA位于PE头中,则RVA = FOA

如果文件对齐 = 内存对齐,则 RVA = FOA

如果不在则进行下述操作

3.判断RVA位于哪个节

假设rva位于X节中,也就是说X节.VirtualAddress <= RVA <= X节.VirtualAddress+X节内存对齐后的大小

差值 = RVA - X节.VirtualAddress

4.得出FOA

FOA = X节.PointerToRawData(X节在文件中的地址) + 差值


C++代码

**代码出处:**https://www.52pojie.cn/thread-1408576-1-1.html

// PE.cpp : Defines the entry point for the console application.
//
#include <stdio.h>
#include <malloc.h>
#include <windows.h>
#include <winnt.h>
#include <math.h>
//在VC6这个比较旧的环境里,没有定义64位的这个宏,需要自己定义,在VS2019中无需自己定义
#define IMAGE_FILE_MACHINE_AMD64  0x8664//VA转FOA 32位
//第一个参数为要转换的在内存中的地址:VA
//第二个参数为指向dos头的指针
//第三个参数为指向nt头的指针
//第四个参数为存储指向节指针的数组
UINT VaToFoa32(UINT va, _IMAGE_DOS_HEADER *dos,_IMAGE_NT_HEADERS* nt, _IMAGE_SECTION_HEADER** sectionArr) {//得到RVA的值:RVA = VA - ImageBaseUINT rva = va - nt->OptionalHeader.ImageBase;//输出rvaprintf("rva:%X\n", rva);//找到PE文件头后的地址 = PE文件头首地址+PE文件头大小UINT PeEnd = (UINT)dos->e_lfanew+sizeof(_IMAGE_NT_HEADERS);//输出PeEndprintf("PeEnd:%X\n", PeEnd);//判断rva是否位于PE文件头中if (rva < PeEnd) {//如果rva位于PE文件头中,则foa==rva,直接返回rva即可printf("foa:%X\n", rva);        return rva;}else {//如果rva在PE文件头外//判断rva属于哪个节int i;for (i = 0; i < nt->FileHeader.NumberOfSections; i++) {//计算内存对齐后节的大小UINT SizeInMemory = ceil((double)max((UINT)sectionArr[i]->Misc.VirtualSize ,(UINT)sectionArr[i]->SizeOfRawData ) / (double)nt->OptionalHeader.SectionAlignment)* nt->OptionalHeader.SectionAlignment;if (rva >= sectionArr[i]->VirtualAddress && rva < (sectionArr[i]->VirtualAddress + SizeInMemory)) {//找到所属的节//输出内存对齐后的节的大小printf("SizeInMemory:%X\n", SizeInMemory);break;}}if (i >= nt->FileHeader.NumberOfSections) {//未找到printf("没有找到匹配的节\n");return -1;}else {//计算差值= RVA - 节.VirtualAddressint offset = rva - sectionArr[i]->VirtualAddress;//FOA = 节.PointerToRawData + 差值int foa = sectionArr[i]->PointerToRawData + offset;printf("foa:%X\n", foa);return foa;}}}//VA转FOA 64位
//第一个参数为要转换的在内存中的地址:VA
//第二个参数为指向dos头的指针
//第三个参数为指向nt头的指针
//第四个参数为存储指向节指针的数组
UINT VaToFoa64(UINT va, _IMAGE_DOS_HEADER* dos, _IMAGE_NT_HEADERS64* nt, _IMAGE_SECTION_HEADER** sectionArr) {//得到RVA的值:RVA = VA - ImageBaseUINT rva = va - nt->OptionalHeader.ImageBase;//输出rvaprintf("rva:%X\n", rva);//找到PE文件头后的地址 = PE文件头首地址+PE文件头大小UINT PeEnd = (UINT)dos->e_lfanew + sizeof(_IMAGE_NT_HEADERS64);//输出PeEndprintf("PeEnd:%X\n", PeEnd);//判断rva是否位于PE文件头中if (rva < PeEnd) {//如果rva位于PE文件头中,则foa==rva,直接返回rva即可printf("foa:%X\n", rva);return rva;}else {//如果rva在PE文件头外//判断rva属于哪个节int i;for (i = 0; i < nt->FileHeader.NumberOfSections; i++) {//计算内存对齐后节的大小UINT SizeInMemory = ceil((double)max((UINT)sectionArr[i]->Misc.VirtualSize ,(UINT)sectionArr[i]->SizeOfRawData ) / (double)nt->OptionalHeader.SectionAlignment)* nt->OptionalHeader.SectionAlignment;if (rva >= sectionArr[i]->VirtualAddress && rva < (sectionArr[i]->VirtualAddress + SizeInMemory)) {//找到所属的节//输出内存对齐后的节的大小printf("SizeInMemory:%X\n", SizeInMemory);break;}}if (i >= nt->FileHeader.NumberOfSections) {//未找到printf("没有找到匹配的节\n");return -1;}else {//计算差值= RVA - 节.VirtualAddressint offset = rva - sectionArr[i]->VirtualAddress;//FOA = 节.PointerToRawData + 差值int foa = sectionArr[i]->PointerToRawData + offset;printf("foa:%X\n", foa);return foa;}}}
int main(int argc, char* argv[])
{//创建DOS对应的结构体指针_IMAGE_DOS_HEADER* dos;//读取文件,返回文件句柄HANDLE hFile = CreateFileA("C:\\Users\\lyl610abc\\Desktop\\GlobalVariety.exe", GENERIC_READ, FILE_SHARE_READ, NULL, OPEN_EXISTING, 0, 0);//根据文件句柄创建映射HANDLE hMap = CreateFileMappingA(hFile, NULL, PAGE_READONLY, 0, 0, 0);//映射内容LPVOID pFile = MapViewOfFile(hMap, FILE_MAP_READ, 0, 0, 0);//类型转换,用结构体的方式来读取dos = (_IMAGE_DOS_HEADER*)pFile;//输出dos->e_magic,以十六进制输出printf("dos->e_magic:%X\n", dos->e_magic);//创建指向PE文件头标志的指针DWORD* peId;//让PE文件头标志指针指向其对应的地址=DOS首地址+偏移peId = (DWORD*)((UINT)dos + dos->e_lfanew);//输出PE文件头标志,其值应为4550,否则不是PE文件printf("peId:%X\n", *peId);//创建指向可选PE头的第一个成员magic的指针WORD* magic;//让magic指针指向其对应的地址=PE文件头标志地址+PE文件头标志大小+标准PE头大小magic = (WORD*)((UINT)peId + sizeof(DWORD) + sizeof(_IMAGE_FILE_HEADER));//输出magic,其值为0x10b代表32位程序,其值为0x20b代表64位程序printf("magic:%X\n", *magic);//根据magic判断为32位程序还是64位程序switch (*magic) {case IMAGE_NT_OPTIONAL_HDR32_MAGIC:{printf("32位程序\n");//确定为32位程序后,就可以使用_IMAGE_NT_HEADERS来接收数据了//创建指向PE文件头的指针_IMAGE_NT_HEADERS* nt;//让PE文件头指针指向其对应的地址nt = (_IMAGE_NT_HEADERS*)peId;printf("Machine:%X\n", nt->FileHeader.Machine);printf("Magic:%X\n", nt->OptionalHeader.Magic);//创建一个指针数组,该指针数组用来存储所有的节表指针//这里相当于_IMAGE_SECTION_HEADER* sectionArr[nt->FileHeader.NumberOfSections],声明了一个动态数组_IMAGE_SECTION_HEADER** sectionArr = (_IMAGE_SECTION_HEADER**) malloc(sizeof(_IMAGE_SECTION_HEADER*) * nt->FileHeader.NumberOfSections);//创建指向块表的指针_IMAGE_SECTION_HEADER* sectionHeader;//让块表的指针指向其对应的地址sectionHeader = (_IMAGE_SECTION_HEADER*)((UINT)nt + sizeof(_IMAGE_NT_HEADERS));//计数,用来计算块表地址int cnt = 0;//比较 计数 和 块表的个数,即遍历所有块表while(cnt< nt->FileHeader.NumberOfSections){//创建指向块表的指针_IMAGE_SECTION_HEADER* section;//让块表的指针指向其对应的地址=第一个块表地址+计数*块表的大小section = (_IMAGE_SECTION_HEADER*)((UINT)sectionHeader + sizeof(_IMAGE_SECTION_HEADER)*cnt);//将得到的块表指针存入数组sectionArr[cnt++] = section;//输出块表名称printf("%s\n", section->Name);}VaToFoa32(0x4198B0,dos, nt, sectionArr);break;}case IMAGE_NT_OPTIONAL_HDR64_MAGIC:{printf("64位程序\n");//确定为64位程序后,就可以使用_IMAGE_NT_HEADERS64来接收数据了//创建指向PE文件头的指针_IMAGE_NT_HEADERS64* nt;nt = (_IMAGE_NT_HEADERS64*)peId;printf("Machine:%X\n", nt->FileHeader.Machine);printf("Magic:%X\n", nt->OptionalHeader.Magic);//创建一个指针数组,该指针数组用来存储所有的节表指针//这里相当于_IMAGE_SECTION_HEADER* sectionArr[nt->FileHeader.NumberOfSections],声明了一个动态数组_IMAGE_SECTION_HEADER** sectionArr = (_IMAGE_SECTION_HEADER**)malloc(sizeof(_IMAGE_SECTION_HEADER*) * nt->FileHeader.NumberOfSections);//创建指向块表的指针_IMAGE_SECTION_HEADER* sectionHeader;//让块表的指针指向其对应的地址,区别在于这里加上的偏移为_IMAGE_NT_HEADERS64sectionHeader = (_IMAGE_SECTION_HEADER*)((UINT)nt + sizeof(_IMAGE_NT_HEADERS64));//计数,用来计算块表地址int cnt = 0;//比较 计数 和 块表的个数,即遍历所有块表while (cnt < nt->FileHeader.NumberOfSections) {//创建指向块表的指针_IMAGE_SECTION_HEADER* section;//让块表的指针指向其对应的地址=第一个块表地址+计数*块表的大小section = (_IMAGE_SECTION_HEADER*)((UINT)sectionHeader + sizeof(_IMAGE_SECTION_HEADER) * cnt);//将得到的块表指针存入数组sectionArr[cnt++] = section;//输出块表名称printf("%s\n", section->Name);}break;}default:{printf("error!\n");break;}}return 0;
}

这篇关于PE结构学习(3)_RVA转换成FOA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192670

相关文章

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Java集合中的链表与结构详解

《Java集合中的链表与结构详解》链表是一种物理存储结构上非连续的存储结构,数据元素的逻辑顺序的通过链表中的引用链接次序实现,文章对比ArrayList与LinkedList的结构差异,详细讲解了链表... 目录一、链表概念与结构二、当向单链表的实现2.1 准备工作2.2 初始化链表2.3 打印数据、链表长

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

创建springBoot模块没有目录结构的解决方案

《创建springBoot模块没有目录结构的解决方案》2023版IntelliJIDEA创建模块时可能出现目录结构识别错误,导致文件显示异常,解决方法为选择模块后点击确认,重新校准项目结构设置,确保源... 目录创建spChina编程ringBoot模块没有目录结构解决方案总结创建springBoot模块没有目录

SpringBoot利用树形结构优化查询速度

《SpringBoot利用树形结构优化查询速度》这篇文章主要为大家详细介绍了SpringBoot利用树形结构优化查询速度,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一个真实的性能灾难传统方案为什么这么慢N+1查询灾难性能测试数据对比核心解决方案:一次查询 + O(n)算法解决

Oracle查询表结构建表语句索引等方式

《Oracle查询表结构建表语句索引等方式》使用USER_TAB_COLUMNS查询表结构可避免系统隐藏字段(如LISTUSER的CLOB与VARCHAR2同名字段),这些字段可能为dbms_lob.... 目录oracle查询表结构建表语句索引1.用“USER_TAB_COLUMNS”查询表结构2.用“a

MySQL中的索引结构和分类实战案例详解

《MySQL中的索引结构和分类实战案例详解》本文详解MySQL索引结构与分类,涵盖B树、B+树、哈希及全文索引,分析其原理与优劣势,并结合实战案例探讨创建、管理及优化技巧,助力提升查询性能,感兴趣的朋... 目录一、索引概述1.1 索引的定义与作用1.2 索引的基本原理二、索引结构详解2.1 B树索引2.2

如何使用Maven创建web目录结构

《如何使用Maven创建web目录结构》:本文主要介绍如何使用Maven创建web目录结构的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录创建web工程第一步第二步第三步第四步第五步第六步第七步总结创建web工程第一步js通过Maven骨架创pytho

Python循环结构全面解析

《Python循环结构全面解析》循环中的代码会执行特定的次数,或者是执行到特定条件成立时结束循环,或者是针对某一集合中的所有项目都执行一次,这篇文章给大家介绍Python循环结构解析,感兴趣的朋友跟随... 目录for-in循环while循环循环控制语句break语句continue语句else子句嵌套的循