教你使用几种常用的等概率抽样法

2023-10-12 00:59

本文主要是介绍教你使用几种常用的等概率抽样法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在统计建模过程中往往会使用到采样技术,通过样本来反映总体特征。关于采样,目前主要有两大类抽样技术,即等概率抽样和非等概率抽样,而在实际应用中,等概率抽样是最常见的,下面就讲讲等概率抽样中的几种抽样技术。


一、简单随机抽样

简单随机抽样(SRS)是我们经常接触到的抽样方法,比如摸彩或抽奖,或办公室需要有人出公差去送数据时用抽签决定人选。SRS的特色是母群体中的每一个体都有相同的机会被选中进入样本,这是一种最公平且概念上最简单的抽样法,可以直接套用统计学原理去进行估算与推论。关于简单随机抽样,在R中可以使用自带的sample()函数实现,下面是sample()函数的语法及参数意义:


sample(x, size, replace = FALSE, prob = NULL)

x:抽样对象,为一个向量

size:抽样规模,即需要从总体x中抽取多少样本

replace:指定是否有放回的抽样,默认为无放回,当设置为TRUE时,则表示简单随机抽样是有放回的

prob:指定抽样元素的概率,默认是每个个体被等概率抽中


例子:

```{r}

#向量--无放回

values <- runif(100, min = 10, max = 100)

sample1 <- sample(values, size = 10, replace = FALSE)

sample1

0?wx_fmt=png
#向量--有放回,不等概率

sample2 <- sample(c('A','B','C','D'), 500, replace = TRUE, prob = c(0.5,0.2,0.2,0.1))

table(sample2)

prop.table(table(sample2))

0?wx_fmt=png
#数据框

x <- runif(100)

y <- rnorm(100)

z <- rt(100,4)

df <- data.frame(x = x, y = y, z = z)


sample3 <- df[sample(1:nrow(df), size = 40),]

head(sample3)

0?wx_fmt=png
```


二、系统抽样

系统抽样方法是一种简化的随机抽样法,最普遍的做法是从母群体的名单中,按照一定的间隔取出足够的个体组成样本。比如我们可以从这500家医院的名单中,每10间医院取一间来做为样本个体。但首先我们必须先随机决定一个起始的号码,也就是从1-10之间随机选出一个号码,假如选中的是3号,则我们从3号开始,每10号取一家医院做为样本(3, 13, 23, 33,…493)。关于系统抽样,在R中可以使用sampling包中的UPsystematic()函数实现,下面是UPsystematic()函数的语法及参数意义:


UPsystematic(pik,eps=1e-6)

pik:为一向量,存放抽样的包含概率

esp:为一控制值,默认为1e-6


例子:

```{r}

x <- round(runif(1000, min = 1, max = 100))

#计算一阶包含概率

pik <- inclusionprobabilities(x,200)

#返回0-1值表示是否被抽样

s <- UPsystematic(pik) 

head(getdata(x,s),10)

0?wx_fmt=png
```

但从上面的返回的ID_unit看,并不是系统抽样定义的那样,即等间隔的抽取样本。为保证与定义一致,这里自定义系统抽样的函数:

```{r}

sys_sampling <- function(x, gap = 10, seed = 1234){

  set.seed(seed)

  i <- round(runif(1, min = 1, max = 10))

    ID <- numeric()

    sampling <- numeric()

  while(i<=length(x)){

    ID[ceiling(i/gap)] <- i

    sampling[ceiling(i/gap)] <- x[i]

    i <- i + gap

  }

 return(data.frame(ID = ID, data = sampling))   

}

```

其中,x为待抽样的总体;gap为抽样间隔,默认为10;seed为种子数,用于从[1,10]之间随机挑选一个起始号设定随机种子,默认为1234。


例子:

```{r}

head(sys_sampling(x = x, gap = 7, seed = 3),10)

0?wx_fmt=png
```


三、分层抽样

分层或分组抽样是一种比SRS更精准的随机抽样法,所用的方法是跟据我们的研究性质,依照相关的条件把母群体中的个体分成不同的层别或组别(strata),再分别从每一层别或组别中的个体随机抽出一定的个体来组成样本。在R中可以使用sampling包中的strata()函数实现,下面是strata()函数的语法及参数意义:


strata(data, stratanames=NULL, size, 

          method=c("srswor","srswr","poisson","systematic"), 

          pik,description=FALSE)

data:待抽样的数据框

stratanames:指定数据框中的分层变量

size:指定每个层中的抽样数量,默认按原数据中分层变量水平的顺序指定抽样数量

method:指定抽取各层数据的方法,默认为无放回的简单随机抽样,还可以是有放回的简单随机抽样、泊松抽样和系统抽样

pik:如果选择系统抽样时,需要指定系统抽样的包含概率pik向量


例子:

```{r}

Stratified <- rep(c('A','B','C','D'), c(100,200,300,400))

Values <- round(runif(1000, min = 1, max = 1000))

df <- data.frame(Stratified = Stratified, Values = Values)


#等比例抽样

n <- 400

size <- round(400*table(df$Stratified)/length(df$Stratified))

s <- strata(data = df, stratanames = 'Stratified', size = size, method = 'srswor')

head(getdata(data = df, m = s))

0?wx_fmt=png
#非等比例抽样,随意指定抽样数量

s <- strata(data = df, stratanames = 'Stratified', size = c(50, 100, 50, 200), method = 'srswor')

head(getdata(data = df, m = s))

0?wx_fmt=png
```


四、聚集抽样

聚集抽样也是跟据某种母群体的特性,将母群体中的个体分成不同的群组(clusters),然后从这些群组中随机抽出部分的群组,再从被选中的群组中随机抽出足够的个体来组成样本。

从定义上看,聚集抽样与分层抽样很相似,但各自的组是完全两回事。在聚集抽样中,尽量保证组内数据差异特别大,而组间差异尽量小;在分层抽样中就恰恰相反,即组内差异尽量小,而组间差异要求很大。在R中可以使用sampling包中的cluster()函数实现,下面是cluster()函数的语法及参数意义:


cluster(data, clustername, size, 

           method=c("srswor","srswr","poisson","systematic"),

           pik,description=FALSE)

data:待抽样的数据框

clustername:指定数据框中的聚集变量

size:指定抽取多少个组

method:指定抽取的方法,默认为无放回的简单随机抽样,还可以是有放回的简单随机抽样、泊松抽样和系统抽样

pik:如果选择系统抽样时,需要指定系统抽样的包含概率pik向量


例子:

```{r}

Clusters <- rep(c('A','B','C','D','E','F','G'), c(100,200,300,400, 100, 200, 300))

Values <- round(runif(1600, min = 1, max = 1000))

df <- data.frame(Clusters = Clusters, Values = Values)


#从7个聚集组中随机抽取3个组

s <- cluster(data = df, clustername = 'Clusters', size = 3, method=c('srswor'))

#查看随机抽取了哪三个组

unique(s$Clusters)

head(getdata(data = df, m = s))

```

0?wx_fmt=png


参考资料

https://www.douban.com/group/topic/72819666/



每天进步一点点2015

学习与分享,取长补短,关注小号!

0?wx_fmt=jpeg
     长按识别二维码à马上关注

这篇关于教你使用几种常用的等概率抽样法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/192107

相关文章

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Java Stream 并行流简介、使用与注意事项小结

《JavaStream并行流简介、使用与注意事项小结》Java8并行流基于StreamAPI,利用多核CPU提升计算密集型任务效率,但需注意线程安全、顺序不确定及线程池管理,可通过自定义线程池与C... 目录1. 并行流简介​特点:​2. 并行流的简单使用​示例:并行流的基本使用​3. 配合自定义线程池​示

GO语言中函数命名返回值的使用

《GO语言中函数命名返回值的使用》在Go语言中,函数可以为其返回值指定名称,这被称为命名返回值或命名返回参数,这种特性可以使代码更清晰,特别是在返回多个值时,感兴趣的可以了解一下... 目录基本语法函数命名返回特点代码示例命名特点基本语法func functionName(parameters) (nam

使用shardingsphere实现mysql数据库分片方式

《使用shardingsphere实现mysql数据库分片方式》本文介绍如何使用ShardingSphere-JDBC在SpringBoot中实现MySQL水平分库,涵盖分片策略、路由算法及零侵入配置... 目录一、ShardingSphere 简介1.1 对比1.2 核心概念1.3 Sharding-Sp

Java 正则表达式的使用实战案例

《Java正则表达式的使用实战案例》本文详细介绍了Java正则表达式的使用方法,涵盖语法细节、核心类方法、高级特性及实战案例,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要... 目录一、正则表达式语法详解1. 基础字符匹配2. 字符类([]定义)3. 量词(控制匹配次数)4. 边

Python Counter 函数使用案例

《PythonCounter函数使用案例》Counter是collections模块中的一个类,专门用于对可迭代对象中的元素进行计数,接下来通过本文给大家介绍PythonCounter函数使用案例... 目录一、Counter函数概述二、基本使用案例(一)列表元素计数(二)字符串字符计数(三)元组计数三、C

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

Python WebSockets 库从基础到实战使用举例

《PythonWebSockets库从基础到实战使用举例》WebSocket是一种全双工、持久化的网络通信协议,适用于需要低延迟的应用,如实时聊天、股票行情推送、在线协作、多人游戏等,本文给大家介... 目录1. 引言2. 为什么使用 WebSocket?3. 安装 WebSockets 库4. 使用 We