浅谈SSIM 损失函数计算

2023-10-11 15:59
文章标签 函数 计算 ssim 浅谈 损失

本文主要是介绍浅谈SSIM 损失函数计算,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

浅谈SSIM 损失函数计算

  • 前言
  • Structural Similarity
    • 亮度相似性
    • 对比度相似性
    • 结构相似度
    • SSIM 实现
  • 总结

前言

最近研究图像重建老是看到SSIM损失函数,但是去找了那篇论文《Image Quality Assessment: From Error Visibility to Structural Similarity》挺有意思的。

Structural Similarity

作者把两幅图 x, y 的相似性按三个维度进行比较:亮度(luminance)l(x,y),对比度(contrast)c(x,y),和结构(structure)s(x,y)。最终 x 和 y 的相似度为这三者的函数:

在这里插入图片描述
其中l(x,y),c(x,y).s(x,y)三个公式定量计算这三者的相似性,公式的设计遵循三个原则:
1.对称性:在这里插入图片描述
2.有界性 :在这里插入图片描述
3.极值唯一在这里插入图片描述, 当且仅当 x = y

亮度相似性

如果一幅图有 N 个像素点,每个像素点的像素值为 xi,那么该图像的平均亮度为:
在这里插入图片描述
则两幅图 x 和 y 的亮度相似度:
在这里插入图片描述

这里 C1是为了防止分母为零的情况,且:
在这里插入图片描述
其中 K1<<1是一个常数,具体代码中的取值为 0.01,L 是灰度的动态范围,由图像的数据类型决定,如果数据为 uint8 型,则 L=255。可以看出,公式 (4) 对称且始终小于等于1,当 x = y时为1。

对比度相似性

所谓对比度,就是图像明暗的变化剧烈程度,也就是像素值的标准差。其计算公式为:
在这里插入图片描述
对比度的相似度公式和公式 (4) 极为相似,只不过把均值换成了方差,定义为:
在这里插入图片描述
其中:
在这里插入图片描述
K2一般在代码中取 0.03。公式 (7) 也对称且小于等于1,当 x = y 时等号成立.

结构相似度

需要注意的是,对一幅图而言,其亮度和对比度都是标量,而其结构显然无法用一个标量表示,而是应该用该图所有像素组成的向量来表示。同时,研究结构相似度时,应该排除亮度和对比度的影响,即排除均值和标准差的影响。归根结底,作者研究的是归一化的两个向量:
在这里插入图片描述
之间的关系。根据均值与标准差的关系,可知这两个向量的模长均为 在这里插入图片描述因此它们的余弦相似度为:
在这里插入图片描述
上式中第二行括号内的部分为协方差公式:
在这里插入图片描述
同样为了防止分母为0,分子分母同时加 C3.
最终s(x,y)
在这里插入图片描述
令 c3=c2/2 , c(x,y)的分子和 s(x,y) 的分母可以约分,最终得到 SSIM 的公式:
在这里插入图片描述

SSIM 实现

然而,上面的 SSIM 不能用于一整幅图。因为在整幅图的跨度上,均值和方差往往变化剧烈;同时,图像上不同区块的失真程度也有可能不同,不能一概而论;此外类比人眼睛每次只能聚焦于一处的特点。作者采用 sliding window (这里可以看做卷积)以步长为 1 计算两幅图各个对应 sliding window 下的 patch 的 SSIM,然后取平均值作为两幅图整体的 SSIM,称为 Mean SSIM。简写为 MSSIM(注意和后续出现的 multi-scale SSIM:MS-SSIM 作区分)。
如果像素 Xi对应的高斯核权重为 Wi。那么加权均值,方差,协方差的公式为:
在这里插入图片描述
假如整幅图有 M 个 patch,那么 MSSIM 公式为:
在这里插入图片描述
在这里插入图片描述
在我们用pytorch实现部分
在这里插入图片描述
非加权平均包含在加权平均的情况之下,因此这里只推导加权的情况,若 wi 为权重,根据 (15):
在这里插入图片描述
想求图像的方差,只需做两次卷积,一次是对原图卷积,一次是对原图的平方卷积,然后用后者减去前者的平方即可。

根据 (16):
在这里插入图片描述
求两图的协方差,只需做三次卷积,第一次是对两图的乘积卷积,第二次和第三次分别对两图本身卷积,然后用第一次的卷积结果减去第二、三次卷积结果的乘积。

import torch
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from math import expdef gaussian(window_size, sigma):gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])return gauss/gauss.sum()def create_window(window_size, channel):_1D_window = gaussian(window_size, 1.5).unsqueeze(1)_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())return windowdef _ssim(img1, img2, window, window_size, channel, size_average = True):mu1 = F.conv2d(img1, window, padding = window_size//2, groups = channel)mu2 = F.conv2d(img2, window, padding = window_size//2, groups = channel)mu1_sq = mu1.pow(2)mu2_sq = mu2.pow(2)mu1_mu2 = mu1*mu2sigma1_sq = F.conv2d(img1*img1, window, padding = window_size//2, groups = channel) - mu1_sqsigma2_sq = F.conv2d(img2*img2, window, padding = window_size//2, groups = channel) - mu2_sqsigma12 = F.conv2d(img1*img2, window, padding = window_size//2, groups = channel) - mu1_mu2C1 = 0.01**2C2 = 0.03**2ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))if size_average:return ssim_map.mean()else:return ssim_map.mean(1).mean(1).mean(1)class SSIM(torch.nn.Module):def __init__(self, window_size = 11, size_average = True):super(SSIM, self).__init__()self.window_size = window_sizeself.size_average = size_averageself.channel = 1self.window = create_window(window_size, self.channel)def forward(self, img1, img2):(_, channel, _, _) = img1.size()if channel == self.channel and self.window.data.type() == img1.data.type():window = self.windowelse:window = create_window(self.window_size, channel)if img1.is_cuda:window = window.cuda(img1.get_device())window = window.type_as(img1)self.window = windowself.channel = channelreturn _ssim(img1, img2, window, self.window_size, channel, self.size_average)def ssim(img1, img2, window_size = 11, size_average = True):(_, channel, _, _) = img1.size()window = create_window(window_size, channel)if img1.is_cuda:window = window.cuda(img1.get_device())window = window.type_as(img1)return _ssim(img1, img2, window, window_size, channel, size_average)

总结

下面的 GIF 对比了 MSE loss 和 SSIM 的优化效果,最左侧为原始图片,中间和右边两个图用随机噪声初始化,然后分别用 MSE loss 和 -SSIM 作为损失函数,通过反向传播以及梯度下降法,优化噪声,最终重建输入图像。:
在这里插入图片描述

这篇关于浅谈SSIM 损失函数计算的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/189176

相关文章

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

浅谈mysql的not exists走不走索引

《浅谈mysql的notexists走不走索引》在MySQL中,​NOTEXISTS子句是否使用索引取决于子查询中关联字段是否建立了合适的索引,下面就来介绍一下mysql的notexists走不走索... 在mysql中,​NOT EXISTS子句是否使用索引取决于子查询中关联字段是否建立了合适的索引。以下