泛函分析(二)巴纳赫(Banach)不动点,贝尔曼方程(Bellman equation)在强化学习的应用

本文主要是介绍泛函分析(二)巴纳赫(Banach)不动点,贝尔曼方程(Bellman equation)在强化学习的应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

      强化学习的目的是寻找最优策略。其中涉及两个核心概念最优状态值最优策略,以及贝尔曼最优公式。而贝尔曼最优公式用不动点原理求解地址,由Banach不动点定理可以知道,强化学习一定存在唯一的解(策略)  ,并且可以通过迭代求得。

1.贝尔曼方程

      贝尔曼方程在强化学习(RL)中无处不在,由美国应用数学家理查德·贝尔曼(Richard Bellman)提出,用于求解马尔可夫决策过程。

       贝尔曼最优性方程是一个递归方程,在有模型环境动态规划DP)算法求解时,可以通过求解该方程可以找到最优值函数和最优策略。

先提出三个概念

1.对于任何有限的MDP,都存在一个最佳策略π*,满足其他所有可能的策略π都不会比这个策略更好。

2.如果对于状态空间中的每个状态,使用π1派生的值函数在此状态的值都大于或等于使用π2派生的值函数在此状态的值,则可以说策略π1优于策略π2

3.采用巴拿赫不动点定理证明始终存在一个比所有其他策略都更好的策略,方法是证明贝尔曼最优算子是对带有L-无穷范数度量的实数完备度量空间上的闭映射。

2 巴纳赫不动点

2.1.距离空间

2.2.1 定义

简单理解:空间,就是在一个集合上定义某种规则(函数),且该规则适合集合内每一个元素。

        比如:对于海洋空间(集合),就是指“四大洋中所有的水分子(元素),在自然状态(规则)可以到达的任意位置的集合”。基于这个定义,四大洋合在一块是海洋空间,各自独立也是海洋空间,而水球内的空间不属于海洋空间,因为自然状态(规则)海洋的水无法进入。

距离空间:就是在一个集合上,定义两个点的距离函数(规则)对集合中任意两个点之间都成立。


2.2 延深理解

以下图为例,对上述定义公式进行文字化表述:

1.每个点和自己的距离为0,任两点间的距离为正数,

2.从A到B的距离,等同于从B到A的距离,

3.从A到B的距离小于等于从A先经过C再到B的距离。

带入1.1定义的公式,表述如下:

在集合S中,任意一个点,比如A点,A到A的距离为0;写成d(A,A)=0

在集合S中,任意两个点,比如A点B点(不重合),其距离大于0;写成d(A,B)> 0

在集合S中,任意三个点,比如A点B点C点(不重合),其距离有:B到A的距离,一定小于B到C的距离加上C到A的距离,写成:d(B,C)+d(C,A)\geqslant d(B,A)

2.压缩映射

f:X→X 是集合X到自身的一个映射,不动点就是指满足 f ( x ) = x  的任意点 x ∈ X .

压缩映射: ( X , d )  是一个距离空间,对映射 f : X → X 如果存在常数k,使得 0 < k < 1 ,且对任何 x , y ∈ X 有 d ( f ( x ) , f ( y ) ) ≤ k d ( x , y ) ,则称f为压缩映射。

简单理解:就是在映射之后两点的距离变短了(0< k < 1),就是压缩了
 

3.不动点原理

Banach 不动点定理如下:


解释:巴拿赫不动点定理通常被叫作压缩映射原理,它用构造性的方法证明了度量(距离)空间中某些特殊映射(压缩映射)不动点的存在性和唯一性。如果某个函数在某个点收敛,那么该函数在那个收敛点的值就是收敛点本身。因此,这个收敛点就是不动点

简单理解:我们可以想象有一张地图,然后将它按照不同的比例进行缩小,得到的每一张新图片和原图总是只有唯一的一个点重合!并且如果我们定义了一个压缩映射,则从图中任意一个点开始采用迭代法最后总能收敛到不动点。

数学应用

1.非线性常微分方程解的存在性

2.非线性两点边值问题的(经典)解的存在性

3.巴纳赫不动点解决贝尔曼方程(强化学习)

3.1柯西序列(补充)

      对于距离空间(X,d),空间元素组成的序列(x1,x2,x3 … xn)如果在某个点收敛(它们无限接近于某个点),这个序列就是柯西序列。

3.2求解最优值

如何求解最优值?
对于一个完整的度量空间,将压缩映射一遍又一遍地应用到集合的元素上,我们最终将得到唯一的一个最优值。我们知道:

  1. 压缩映射将集合中元素聚集到一起。

  2. 不断运用压缩映射,得到一个柯西序列

  3. 完备度量空间中的柯西序列始终会收敛自身中的一个值

3.3解决

 基于L-无穷范数度量:根据此度量空间范数的定义,两个值函数之间的距离等于两个值函数向量各方向绝对值之差的最大值。同样,对于有限奖励的有限MDP,值函数将始终在实数空间中。因此,此有限空间是完备的。此外贝尔曼算子B是压缩映射。

因此,根据巴拿赫不动点定理,我们得出结论
对每个MDP,存在唯一的最优值函数V *,使用这个值函数,我们可以得到最优策略π *。

因此证明,对于任何有限的MDP,都存在一个最优策略π *,不差于其他所有可能的策略π。

策略迭代和值迭代的区别
      1.策略迭代选择初始随机策略,通过策略评估-策略改进-反复迭代直至策略最优;
      2.价值迭代利用Banach不动点定理,迭代的方法求解Bellman最优方程,通过寻找最优价值函数,再提取最优策略,因为值函数一旦最优,那么策略也一定最优(保证收敛),策略迭代更快速高效一点。

      策略迭代和价值迭代都用到了动态规划方法和自益的思想。

不动点在强化学习中的应用参考:地址

不动点在GNN中的应用参考:地址

参考文献

1.【泛函分析】距离空间和赋范空间_距离空间和赋反空间-CSDN博客

2.机器学习系列5:距离空间(1)_距离空间中b(1,4)表示什么)-CSDN博客 

3.(I)Banach空间和不动点定理 (1) - 知乎 

4.泛函分析笔记(十) 不动点定理及其应用_f(x)到xf(x)的是什么映射-CSDN博客 

4.强化学习之动态规划_策略改进定理-CSDN博客 

5.巴拿赫不动点定理_证明不动点巴拿赫空间-CSDN博客 

6.参考书:强化学习:原理与Python实现 

7.强化学习:贝尔曼最优公式_~hello world~的博客-CSDN博客 

8.转载:强化学习中Bellman最优性方程背后的数学原理?_贝尔曼最优性原理_IEEEagent RL的博客-CSDN博客 

这篇关于泛函分析(二)巴纳赫(Banach)不动点,贝尔曼方程(Bellman equation)在强化学习的应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/188782

相关文章

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

PostgreSQL简介及实战应用

《PostgreSQL简介及实战应用》PostgreSQL是一种功能强大的开源关系型数据库管理系统,以其稳定性、高性能、扩展性和复杂查询能力在众多项目中得到广泛应用,本文将从基础概念讲起,逐步深入到高... 目录前言1. PostgreSQL基础1.1 PostgreSQL简介1.2 基础语法1.3 数据库

Unity新手入门学习殿堂级知识详细讲解(图文)

《Unity新手入门学习殿堂级知识详细讲解(图文)》Unity是一款跨平台游戏引擎,支持2D/3D及VR/AR开发,核心功能模块包括图形、音频、物理等,通过可视化编辑器与脚本扩展实现开发,项目结构含A... 目录入门概述什么是 UnityUnity引擎基础认知编辑器核心操作Unity 编辑器项目模式分类工程

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

Python中yield的用法和实际应用示例

《Python中yield的用法和实际应用示例》在Python中,yield关键字主要用于生成器函数(generatorfunctions)中,其目的是使函数能够像迭代器一样工作,即可以被遍历,但不会... 目录python中yield的用法详解一、引言二、yield的基本用法1、yield与生成器2、yi

Python多线程应用中的卡死问题优化方案指南

《Python多线程应用中的卡死问题优化方案指南》在利用Python语言开发某查询软件时,遇到了点击搜索按钮后软件卡死的问题,本文将简单分析一下出现的原因以及对应的优化方案,希望对大家有所帮助... 目录问题描述优化方案1. 网络请求优化2. 多线程架构优化3. 全局异常处理4. 配置管理优化优化效果1.

从基础到高阶详解Python多态实战应用指南

《从基础到高阶详解Python多态实战应用指南》这篇文章主要从基础到高阶为大家详细介绍Python中多态的相关应用与技巧,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、多态的本质:python的“鸭子类型”哲学二、多态的三大实战场景场景1:数据处理管道——统一处理不同数据格式

Python学习笔记之getattr和hasattr用法示例详解

《Python学习笔记之getattr和hasattr用法示例详解》在Python中,hasattr()、getattr()和setattr()是一组内置函数,用于对对象的属性进行操作和查询,这篇文章... 目录1.getattr用法详解1.1 基本作用1.2 示例1.3 原理2.hasattr用法详解2.

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按