python小欢喜(八)俄罗斯方块 (7) 连续生成下落的方块

2023-10-11 13:30

本文主要是介绍python小欢喜(八)俄罗斯方块 (7) 连续生成下落的方块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面的文章《python小欢喜(八)俄罗斯方块 (6) 源码文件的初步组织》实现了一个方块组合下落的效果,接下来实现一个方块组合停在了底部之后,一个新的方块组合紧接着从顶部落下的效果。

固定形状的方块组合组合连续下落的效果如下:
在这里插入图片描述
为了实现上述效果,当下落的方块组合碰到底部后,要停下来,并且新的方块组合从顶部落下,为此在底部方块组合类BottomGroup中添加了一个方法 eat,

#吃掉下落的方块def eat(self,fallingGroup):for d in fallingGroup.sprites():self.add(d)fallingGroup.empty()

修改下落方块组合类FallingGroup 中的 down方法:

 #方块组合向下移动def down(self, speed):if not self.bottomGroup.collided(self):self.rect.y += speedfor block in self.sprites():block.down(speed)           else:#self.reset()self.bottomGroup.eat(self)          

当下落的方块组合碰到了底部方块组合时,调用 底部方块组合 对象的eat 方法,将下落方块“吃”住。

然后在main.py的 animate函数中添加如下语句:

#如果下落的方块组合已经被底部方块组合“吃”掉了,则生成新的下落方块组合if len(fallingGroup.sprites())<=0:fallingGroup = FallingGroup(typeIdx=1,bottomGroup=bottomGroup)

从以上的编码过程可知,如果在生成下落方块组合时,随机地给出形状参数索引typeIdx,则可以随机地生成不同的形状。

为此在main.py中添加一个函数,随机地生成不同形状的下落方块组合

#随机生成下落方块组合
def randomFallingGroup():return FallingGroup(typeIdx=random.randint(0,8),bottomGroup=bottomGroup)

实际效果如下:
在这里插入图片描述

完整的代码如下:

config.py

# config.py
# 配置数据,全局变量的定义#颜色常量的定义
BLACK = (0,0,0)       # 用RGB值定义黑色
WHITE = (255,255,255) # 用RGB值定义白色#配置参数类
class Config():def __init__(self):passscreenWidth = 600screenHeight= 800blockWidth = 40speed = 40#方块移动的速度
speed = Config.speed#方块组合形状的二维矩阵图示,1表示该处有方块,0表示没有
shapeGraph=[
(
[1,1,1,1],
[0,0,0,0],
[0,0,0,0],
[0,0,0,0],
),
(
[0,1,0,0],
[1,1,1,0],
[0,0,0,0],
[0,0,0,0],
),
(
[1,0,0,0],
[1,0,0,0],
[1,0,0,0],
[1,0,0,0],
),
(
[1,1,1,0],
[1,0,0,0],
[0,0,0,0],
[0,0,0,0],
),
(
[1,0,0,0],
[1,0,0,0],
[1,1,0,0],
[0,0,0,0],
),
(
[1,1,0,0],
[1,0,0,0],
[1,0,0,0],
[0,0,0,0],
),
(
[1,0,0,0],
[1,1,0,0],
[1,0,0,0],
[0,0,0,0],
),
(
[1,1,0,0],
[0,1,1,0],
[0,0,0,0],
[0,0,0,0],
),
(
[1,1,0,0],
[1,1,0,0],
[0,0,0,0],
[0,0,0,0],
),
]#将形状图转换为形状坐标列表
def shpaeGraph2List(shapeGraph):shapeList =[]for g in shapeGraph:shape=[]for y in range(4):for x in range(4):if g[y][x] == 1 :shape.append([x*Config.blockWidth,y*Config.blockWidth])shapeList.append(shape)return shapeList#存放形状初始坐标列表的全局变量 shapeList
shapeList = shpaeGraph2List(shapeGraph)

block.py

# block.py
# 方块及方块组合类的定义import pygame
from config import *# 方块类
class Block(pygame.sprite.Sprite):def __init__(self,x,y):self.inix = xself.iniy = ypygame.sprite.Sprite.__init__(self)self.image = pygame.image.load("block.png")self.rect = self.image.get_rect()        self.rect.x = xself.rect.y = y#重置初始位置def reset(self):self.rect.x = self.inixself.rect.y = self.iniy#方块向下移动def down(self, speed):# 向下移动self.rect.centery += speed        #方块左右移动def move(self, speed):# 左右移动self.rect.centerx += speed# 表示下落中的多个方块的组合,typeIdx指明组合形状在shapeList中的索引
class FallingGroup(pygame.sprite.Group):def __init__(self, typeIdx,bottomGroup):self.bottomGroup = bottomGrouppygame.sprite.Group.__init__(self)iniX = int((Config.screenWidth/2)/Config.blockWidth)*Config.blockWidthshape = shapeList[typeIdx]       for xyPair in shape:x = iniX+xyPair[0]y = xyPair[1]             self.add(Block(x,y)) #得到组合对象的包络矩形    self.rect = self.boundingRect()#记录初始位置,此处要使用copy方法    self.iniRect = self.rect.copy()#重置初始位置def reset(self):#恢复初始位置,此处要使用copy方法  self.rect = self.iniRect.copy()       for block in self.sprites():block.reset()#方块组合向下移动def down(self, speed):if not self.bottomGroup.collided(self):self.rect.y += speedfor block in self.sprites():block.down(speed)           else:#self.reset()self.bottomGroup.eat(self)              #方块组合左右移动def move(self, speed):#print([self.rect.x,self.rect.y,self.rect.width,self.rect.height])if (speed > 0 and self.rect.x < Config.screenWidth-self.rect.width) or (speed < 0 and self.rect.x > 0):self.rect.x += speedfor block in self.sprites():block.move(speed) #求出包围组合对象的矩形def boundingRect(self):minX = Config.screenWidth+100minY = Config.screenHeight+100maxX = -100maxY = -100for block in self.sprites():if block.rect.x < minX:minX = block.rect.xif block.rect.y < minY:minY = block.rect.yif block.rect.x > maxX:maxX = block.rect.xif block.rect.y > maxY:maxY = block.rect.yreturn pygame.Rect(minX,minY,maxX-minX+Config.blockWidth,maxY-minY+Config.blockWidth)#旋转def rotate(self):#取组合对象的中心点作为旋转中心,旋转中心应位于网格点上    cx=int((self.rect.x+self.rect.width/2)/Config.blockWidth)*Config.blockWidthcy=int((self.rect.y+self.rect.height/2)/Config.blockWidth)*Config.blockWidthfor block in self.sprites():#求出当前方块的中心与旋转中心的距离差dx = block.rect.centerx -cxdy = block.rect.centery -cy#距离差组成的复数 乘上 复数 i ,得到的复数是 原复数逆时针旋转90度的结果r  = complex(dx,dy)*complex(0,1)#得到旋转之后的结果block.rect.centerx = cx + r.real + Config.blockWidthblock.rect.centery = cy + r.imag#取得包络矩形的原始水平位置lastRectX = self.rect.x            #更新组合对象的包络矩形self.rect = self.boundingRect()dx =  lastRectX - self.rect.x #使得旋转后的组合对象的水平位置保持不变self.rect.x += dxfor block in self.sprites():block.rect.x+=dx# 表示底部方块的组合
class BottomGroup(pygame.sprite.Group):def __init__(self):pygame.sprite.Group.__init__(self)#预设一行方块,放置在窗口下边界之下,不会显示,但可用于让下落的方块停下来n = int(Config.screenWidth/Config.blockWidth)for i in range(n):#测试时故意让预设的一行方块向上移动一行,这样就可显示出来,可以看到碰撞检测的效果y= Config.screenHeight-Config.blockWidth#y= Config.screenHeightx= i*Config.blockWidthself.add(Block(x,y))#检查下落的方块是否与底部方块发生了碰撞def collided(self,fallingGroup):for d in fallingGroup.sprites():for b in self.sprites():if b.rect.y - d.rect.y <=Config.blockWidth and b.rect.x == d.rect.x:return Truereturn False#吃掉下落的方块def eat(self,fallingGroup):for d in fallingGroup.sprites():self.add(d)fallingGroup.empty()

main.py

# main.py
# 俄罗斯方块,主程序所在文件import pygame
from block import *
import random#随机生成下落方块组合
def randomFallingGroup():return FallingGroup(typeIdx=random.randint(0,8),bottomGroup=bottomGroup)# 重绘显示区域,形成动画效果
def animate():global fallingGroup,bottomGroup#设置屏幕为黑色screen.fill(BLACK)#下落方块组合执行下落方法fallingGroup.down(speed)#如果下落的方块组合已经被底部方块组合“吃”掉了,则生成新的下落方块组合if len(fallingGroup.sprites())<=0:fallingGroup = randomFallingGroup()#下落方块组合执行绘制方法fallingGroup.draw(screen) #底部方块组合执行绘制方法bottomGroup.draw(screen)   #刷新屏幕 pygame.display.flip() # ------------------------main---------------------------------------------------------------------# 初始化各种对象
pygame.init()
#游戏窗口的屏幕
screen = pygame.display.set_mode([Config.screenWidth,Config.screenHeight])
#用黑色填充背景
screen.fill(BLACK)
#设置图形窗口标题
pygame.display.set_caption("俄罗斯方块") 
#游戏时钟
clock = pygame.time.Clock()#生成底部方块组合对象
bottomGroup =BottomGroup()#随机生成一个下落方块组合对象
fallingGroup = randomFallingGroup()# 事件处理循环
running = True
while running:#设定每秒帧数,为了实现俄罗斯方块一格一格的下落效果,将帧率设得很低,相应的下降速度(每秒位移量)等于方块的边长clock.tick(2) for event in pygame.event.get():    if event.type == pygame.QUIT: running = Falseif event.type == pygame.KEYDOWN:          # 如果按下了键盘上的键if event.key == pygame.K_LEFT:        # 如果按下了向左的方向键fallingGroup.move(-1*speed)elif event.key == pygame.K_RIGHT:     #如果按下了向右的方向键fallingGroup.move(speed)elif event.key == pygame.K_UP:        #如果按下了向上的方向键fallingGroup.rotate()animate()  
pygame.quit() #退出pygame

特别提示:

以上代码只是演示连续不断地生成下落的方块。随着时间的推移,会不断地生成新的方块对象,程序占用的内存会不断地增长。所以不适合运行很长的时间。在后面的文章中会对程序做进一步的完善。

这篇关于python小欢喜(八)俄罗斯方块 (7) 连续生成下落的方块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/188379

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统