python小欢喜(八)俄罗斯方块 (7) 连续生成下落的方块

2023-10-11 13:30

本文主要是介绍python小欢喜(八)俄罗斯方块 (7) 连续生成下落的方块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前面的文章《python小欢喜(八)俄罗斯方块 (6) 源码文件的初步组织》实现了一个方块组合下落的效果,接下来实现一个方块组合停在了底部之后,一个新的方块组合紧接着从顶部落下的效果。

固定形状的方块组合组合连续下落的效果如下:
在这里插入图片描述
为了实现上述效果,当下落的方块组合碰到底部后,要停下来,并且新的方块组合从顶部落下,为此在底部方块组合类BottomGroup中添加了一个方法 eat,

#吃掉下落的方块def eat(self,fallingGroup):for d in fallingGroup.sprites():self.add(d)fallingGroup.empty()

修改下落方块组合类FallingGroup 中的 down方法:

 #方块组合向下移动def down(self, speed):if not self.bottomGroup.collided(self):self.rect.y += speedfor block in self.sprites():block.down(speed)           else:#self.reset()self.bottomGroup.eat(self)          

当下落的方块组合碰到了底部方块组合时,调用 底部方块组合 对象的eat 方法,将下落方块“吃”住。

然后在main.py的 animate函数中添加如下语句:

#如果下落的方块组合已经被底部方块组合“吃”掉了,则生成新的下落方块组合if len(fallingGroup.sprites())<=0:fallingGroup = FallingGroup(typeIdx=1,bottomGroup=bottomGroup)

从以上的编码过程可知,如果在生成下落方块组合时,随机地给出形状参数索引typeIdx,则可以随机地生成不同的形状。

为此在main.py中添加一个函数,随机地生成不同形状的下落方块组合

#随机生成下落方块组合
def randomFallingGroup():return FallingGroup(typeIdx=random.randint(0,8),bottomGroup=bottomGroup)

实际效果如下:
在这里插入图片描述

完整的代码如下:

config.py

# config.py
# 配置数据,全局变量的定义#颜色常量的定义
BLACK = (0,0,0)       # 用RGB值定义黑色
WHITE = (255,255,255) # 用RGB值定义白色#配置参数类
class Config():def __init__(self):passscreenWidth = 600screenHeight= 800blockWidth = 40speed = 40#方块移动的速度
speed = Config.speed#方块组合形状的二维矩阵图示,1表示该处有方块,0表示没有
shapeGraph=[
(
[1,1,1,1],
[0,0,0,0],
[0,0,0,0],
[0,0,0,0],
),
(
[0,1,0,0],
[1,1,1,0],
[0,0,0,0],
[0,0,0,0],
),
(
[1,0,0,0],
[1,0,0,0],
[1,0,0,0],
[1,0,0,0],
),
(
[1,1,1,0],
[1,0,0,0],
[0,0,0,0],
[0,0,0,0],
),
(
[1,0,0,0],
[1,0,0,0],
[1,1,0,0],
[0,0,0,0],
),
(
[1,1,0,0],
[1,0,0,0],
[1,0,0,0],
[0,0,0,0],
),
(
[1,0,0,0],
[1,1,0,0],
[1,0,0,0],
[0,0,0,0],
),
(
[1,1,0,0],
[0,1,1,0],
[0,0,0,0],
[0,0,0,0],
),
(
[1,1,0,0],
[1,1,0,0],
[0,0,0,0],
[0,0,0,0],
),
]#将形状图转换为形状坐标列表
def shpaeGraph2List(shapeGraph):shapeList =[]for g in shapeGraph:shape=[]for y in range(4):for x in range(4):if g[y][x] == 1 :shape.append([x*Config.blockWidth,y*Config.blockWidth])shapeList.append(shape)return shapeList#存放形状初始坐标列表的全局变量 shapeList
shapeList = shpaeGraph2List(shapeGraph)

block.py

# block.py
# 方块及方块组合类的定义import pygame
from config import *# 方块类
class Block(pygame.sprite.Sprite):def __init__(self,x,y):self.inix = xself.iniy = ypygame.sprite.Sprite.__init__(self)self.image = pygame.image.load("block.png")self.rect = self.image.get_rect()        self.rect.x = xself.rect.y = y#重置初始位置def reset(self):self.rect.x = self.inixself.rect.y = self.iniy#方块向下移动def down(self, speed):# 向下移动self.rect.centery += speed        #方块左右移动def move(self, speed):# 左右移动self.rect.centerx += speed# 表示下落中的多个方块的组合,typeIdx指明组合形状在shapeList中的索引
class FallingGroup(pygame.sprite.Group):def __init__(self, typeIdx,bottomGroup):self.bottomGroup = bottomGrouppygame.sprite.Group.__init__(self)iniX = int((Config.screenWidth/2)/Config.blockWidth)*Config.blockWidthshape = shapeList[typeIdx]       for xyPair in shape:x = iniX+xyPair[0]y = xyPair[1]             self.add(Block(x,y)) #得到组合对象的包络矩形    self.rect = self.boundingRect()#记录初始位置,此处要使用copy方法    self.iniRect = self.rect.copy()#重置初始位置def reset(self):#恢复初始位置,此处要使用copy方法  self.rect = self.iniRect.copy()       for block in self.sprites():block.reset()#方块组合向下移动def down(self, speed):if not self.bottomGroup.collided(self):self.rect.y += speedfor block in self.sprites():block.down(speed)           else:#self.reset()self.bottomGroup.eat(self)              #方块组合左右移动def move(self, speed):#print([self.rect.x,self.rect.y,self.rect.width,self.rect.height])if (speed > 0 and self.rect.x < Config.screenWidth-self.rect.width) or (speed < 0 and self.rect.x > 0):self.rect.x += speedfor block in self.sprites():block.move(speed) #求出包围组合对象的矩形def boundingRect(self):minX = Config.screenWidth+100minY = Config.screenHeight+100maxX = -100maxY = -100for block in self.sprites():if block.rect.x < minX:minX = block.rect.xif block.rect.y < minY:minY = block.rect.yif block.rect.x > maxX:maxX = block.rect.xif block.rect.y > maxY:maxY = block.rect.yreturn pygame.Rect(minX,minY,maxX-minX+Config.blockWidth,maxY-minY+Config.blockWidth)#旋转def rotate(self):#取组合对象的中心点作为旋转中心,旋转中心应位于网格点上    cx=int((self.rect.x+self.rect.width/2)/Config.blockWidth)*Config.blockWidthcy=int((self.rect.y+self.rect.height/2)/Config.blockWidth)*Config.blockWidthfor block in self.sprites():#求出当前方块的中心与旋转中心的距离差dx = block.rect.centerx -cxdy = block.rect.centery -cy#距离差组成的复数 乘上 复数 i ,得到的复数是 原复数逆时针旋转90度的结果r  = complex(dx,dy)*complex(0,1)#得到旋转之后的结果block.rect.centerx = cx + r.real + Config.blockWidthblock.rect.centery = cy + r.imag#取得包络矩形的原始水平位置lastRectX = self.rect.x            #更新组合对象的包络矩形self.rect = self.boundingRect()dx =  lastRectX - self.rect.x #使得旋转后的组合对象的水平位置保持不变self.rect.x += dxfor block in self.sprites():block.rect.x+=dx# 表示底部方块的组合
class BottomGroup(pygame.sprite.Group):def __init__(self):pygame.sprite.Group.__init__(self)#预设一行方块,放置在窗口下边界之下,不会显示,但可用于让下落的方块停下来n = int(Config.screenWidth/Config.blockWidth)for i in range(n):#测试时故意让预设的一行方块向上移动一行,这样就可显示出来,可以看到碰撞检测的效果y= Config.screenHeight-Config.blockWidth#y= Config.screenHeightx= i*Config.blockWidthself.add(Block(x,y))#检查下落的方块是否与底部方块发生了碰撞def collided(self,fallingGroup):for d in fallingGroup.sprites():for b in self.sprites():if b.rect.y - d.rect.y <=Config.blockWidth and b.rect.x == d.rect.x:return Truereturn False#吃掉下落的方块def eat(self,fallingGroup):for d in fallingGroup.sprites():self.add(d)fallingGroup.empty()

main.py

# main.py
# 俄罗斯方块,主程序所在文件import pygame
from block import *
import random#随机生成下落方块组合
def randomFallingGroup():return FallingGroup(typeIdx=random.randint(0,8),bottomGroup=bottomGroup)# 重绘显示区域,形成动画效果
def animate():global fallingGroup,bottomGroup#设置屏幕为黑色screen.fill(BLACK)#下落方块组合执行下落方法fallingGroup.down(speed)#如果下落的方块组合已经被底部方块组合“吃”掉了,则生成新的下落方块组合if len(fallingGroup.sprites())<=0:fallingGroup = randomFallingGroup()#下落方块组合执行绘制方法fallingGroup.draw(screen) #底部方块组合执行绘制方法bottomGroup.draw(screen)   #刷新屏幕 pygame.display.flip() # ------------------------main---------------------------------------------------------------------# 初始化各种对象
pygame.init()
#游戏窗口的屏幕
screen = pygame.display.set_mode([Config.screenWidth,Config.screenHeight])
#用黑色填充背景
screen.fill(BLACK)
#设置图形窗口标题
pygame.display.set_caption("俄罗斯方块") 
#游戏时钟
clock = pygame.time.Clock()#生成底部方块组合对象
bottomGroup =BottomGroup()#随机生成一个下落方块组合对象
fallingGroup = randomFallingGroup()# 事件处理循环
running = True
while running:#设定每秒帧数,为了实现俄罗斯方块一格一格的下落效果,将帧率设得很低,相应的下降速度(每秒位移量)等于方块的边长clock.tick(2) for event in pygame.event.get():    if event.type == pygame.QUIT: running = Falseif event.type == pygame.KEYDOWN:          # 如果按下了键盘上的键if event.key == pygame.K_LEFT:        # 如果按下了向左的方向键fallingGroup.move(-1*speed)elif event.key == pygame.K_RIGHT:     #如果按下了向右的方向键fallingGroup.move(speed)elif event.key == pygame.K_UP:        #如果按下了向上的方向键fallingGroup.rotate()animate()  
pygame.quit() #退出pygame

特别提示:

以上代码只是演示连续不断地生成下落的方块。随着时间的推移,会不断地生成新的方块对象,程序占用的内存会不断地增长。所以不适合运行很长的时间。在后面的文章中会对程序做进一步的完善。

这篇关于python小欢喜(八)俄罗斯方块 (7) 连续生成下落的方块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/188379

相关文章

基于Linux的ffmpeg python的关键帧抽取

《基于Linux的ffmpegpython的关键帧抽取》本文主要介绍了基于Linux的ffmpegpython的关键帧抽取,实现以按帧或时间间隔抽取关键帧,文中通过示例代码介绍的非常详细,对大家的学... 目录1.FFmpeg的环境配置1) 创建一个虚拟环境envjavascript2) ffmpeg-py

python使用库爬取m3u8文件的示例

《python使用库爬取m3u8文件的示例》本文主要介绍了python使用库爬取m3u8文件的示例,可以使用requests、m3u8、ffmpeg等库,实现获取、解析、下载视频片段并合并等步骤,具有... 目录一、准备工作二、获取m3u8文件内容三、解析m3u8文件四、下载视频片段五、合并视频片段六、错误

Python中提取文件名扩展名的多种方法实现

《Python中提取文件名扩展名的多种方法实现》在Python编程中,经常会遇到需要从文件名中提取扩展名的场景,Python提供了多种方法来实现这一功能,不同方法适用于不同的场景和需求,包括os.pa... 目录技术背景实现步骤方法一:使用os.path.splitext方法二:使用pathlib模块方法三

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

一文深入详解Python的secrets模块

《一文深入详解Python的secrets模块》在构建涉及用户身份认证、权限管理、加密通信等系统时,开发者最不能忽视的一个问题就是“安全性”,Python在3.6版本中引入了专门面向安全用途的secr... 目录引言一、背景与动机:为什么需要 secrets 模块?二、secrets 模块的核心功能1. 基

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

Python常用命令提示符使用方法详解

《Python常用命令提示符使用方法详解》在学习python的过程中,我们需要用到命令提示符(CMD)进行环境的配置,:本文主要介绍Python常用命令提示符使用方法的相关资料,文中通过代码介绍的... 目录一、python环境基础命令【Windows】1、检查Python是否安装2、 查看Python的安

Python UV安装、升级、卸载详细步骤记录

《PythonUV安装、升级、卸载详细步骤记录》:本文主要介绍PythonUV安装、升级、卸载的详细步骤,uv是Astral推出的下一代Python包与项目管理器,主打单一可执行文件、极致性能... 目录安装检查升级设置自动补全卸载UV 命令总结 官方文档详见:https://docs.astral.sh/

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.