GPU 虚拟化技术MIG简介和安装使用教程

2023-10-11 12:30

本文主要是介绍GPU 虚拟化技术MIG简介和安装使用教程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

使用多实例GPU (MIG/Multi-Instance GPU)可以将强大的显卡分成更小的部分,每个部分都有自己的工作,这样单张显卡可以同时运行不同的任务。本文将对其进行简单介绍并且提供安装和使用的示例。

什么是MIG

NVIDIA Multi-Instance GPU (MIG) 技术是 NVIDIA 推出的一种 GPU 虚拟化技术,允许一块物理 GPU 被分割成多个独立的 GPU 实例,每个实例可以被分配给不同的虚拟机、容器或用户。这种技术有助于更有效地利用 GPU 资源,提高 GPU 的共享性和多租户支持。

MIG 技术通常需要硬件和软件支持,包括支持 MIG 的 NVIDIA GPU 和相应的驱动程序。这使得 MIG 技术成为数据中心和云计算环境中更好地管理 GPU 资源的有力工具。它有助于提高 GPU 利用率,降低成本,并更好地满足不同应用程序和用户的需求。

MIG是如何工作的

MIG通过虚拟地将单个物理GPU划分为更小的独立实例,这项技术涉及GPU虚拟化,GPU的资源,包括CUDA内核和内存,被分配到不同的实例。这些实例彼此隔离,确保在一个实例上运行的任务不会干扰其他实例。

MIG支持GPU资源的动态分配,允许根据工作负载需求动态调整实例的大小。这种动态分配有助于有效地利用资源。多个应用程序或用户可以在同一个GPU上并发运行,每个GPU都有自己的专用实例。整个过程通过软件进行管理,为管理员提供了对实例配置和资源分配的控制。这种方法增强了在单个GPU上处理不同工作负载的灵活性、可扩展性和资源效率。

MIG 技术关键特点

  1. 资源划分:MIG 允许将一块物理 GPU 分割成多个 GPU 实例,每个实例具有自己的 GPU 核心、GPU 内存、NVLink 带宽等资源。这样可以更好地控制和划分 GPU 资源。
  2. 多租户支持:MIG 技术可以用于虚拟化 GPU,以便不同用户或应用程序可以共享同一块物理 GPU 而不会相互干扰。
  3. 动态资源调整:管理员可以根据工作负载的需求动态地重新配置 MIG 实例的资源,从而实现更好的资源利用和性能。
  4. 容错性:MIG 技术支持 GPU 实例的隔离,这意味着一个 GPU 实例中的问题不会影响到其他实例,从而提高了系统的容错性。
  5. 部署灵活性:MIG 技术可以用于云计算、虚拟化环境、容器化应用程序等多种情境,为不同的部署需求提供了灵活性。

MIG的条件

并不是所有的显卡都支持MIG,以下是官方给出的GPU型号:

可以看到,基本上就是A100和H100可以使用,虽然都是24G显存,但是消费级的4090是不支持的。

然后就是驱动

达到这些要求以后就可以使用了

MIG配置和使用

安装Nvidia SMI(这里使用ubuntu系统作为示例)很简单,只要安装好nvidia提供的工具包即可

 sudo apt-get install nvidia-utils

下一步就是验证Nvidia驱动程序。

 nvidia-smi

没问题的话就说明安装完成了。下面就是配置的命令:

 sudo nvidia-smi -i <GPU_ID> --mig on

nvidia-smi结果中包含了GPU ID。

验证MIG配置(需要GPU ID和实例ID进行下一步工作)

 nvidia-smi mig -lgip

验证成功后就说明我们的MIG已经正常可用,下面可以开始创建虚拟GPU

我们将单个GPU(硬件)划分为多个独立的GPU实例,以手动分担工作负载并降低工作平衡的成本。

 sudo nvidia-smi -i <GPU_ID> --mig <INSTANCE_COUNT>

-i <GPU_ID>:指定要使用的GPU设备。将<GPU_ID>替换为需要配置的GPU的实际ID。

-mig <INSTANCE_COUNT>:用于配置mig (Multi-Instance GPU)。将<INSTANCE_COUNT>替换为希望在指定GPU上创建的所需GPU实例数。每个实例都有自己的一组资源,包括内存和计算能力。

比如我们下面的示例:在GPU ID=0上创建3个实例

 sudo nvidia-smi -i 0 --mig 3

更改实例的资源分配(工作负载),主要目标是为特定的MIG实例调整资源分配

 sudo nvidia-smi -i <GPU_ID> -gi <INSTANCE_ID> -rg <WORKLOAD_PERCENT>

-i <GPU_ID>:指定执行该操作的GPU。例如,-i 0表示第一个GPU。

-gi <INSTANCE_ID>:在指定GPU内执行操作的MIG实例。例如,-gi 1表示GPU上的第二个MIG实例。

-rg <WORKLOAD_PERCENT>:分配给指定MIG实例的GPU资源的百分比。将<WORKLOAD_PERCENT>替换为所需的百分比。例如-rg 70表示将70%的GPU资源分配给指定的MIG实例。

在GPU_ID = 0和MIG Instance=1上设置占GPU总资源70%的工作负载

 sudo nvidia-smi -i 0 -gi 1 -rg 70

Docker和MIG

大部分情况我们都会使用Docker来作为运行环境,所以这里我们再介绍一下Docker和MIG的配置。

安装NVIDIA Container Toolkit,这是我们再Docker中使用GPU的第一步,这里就不详细介绍了,我们直接使用命令安装。

 sudo apt-get install -y nvidia-container-toolkit

配置Docker守护进程以使用NVIDIA:编辑Docker守护进程配置文件/etc/docker/daemon.json),添加如下行:

 {"default-runtime": "nvidia","runtimes": {"nvidia": {"path": "/usr/bin/nvidia-container-runtime","runtimeArgs": []}}}

以上代码只是示例,请跟你的实际情况修改,本文不主要介绍如何再Docker中使用GPU,所以只作为简单示例。

配置完需要重启

 sudo systemctl restart docker

验证GPU可用性,以获取GPU信息

 docker run --gpus all nvidia/cuda:11.0-base nvidia-smi

下面开始我们的主要工作,配置MIG

 docker run --gpus device=0,1,2,3 -e NVIDIA_VISIBLE_DEVICES=0,1,2,3 my_container

可以根据想要使用的MIG设备数量来调整——gpu和NVIDIA_VISIBLE_DEVICES参数。这里的gpus是我们通过上面命令虚拟的GPU

总结

MIG能够将单个GPU划分为更小的实例,MIG为同时处理各种工作负载提供了经济高效且可扩展的解决方案。MIG的底层功能,包括资源隔离和动态分配,增强了GPU使用的灵活性、可扩展性和整体效率。

跨越数据中心、科学研究和人工智能开发的实际应用凸显了MIG在优化GPU资源和加速计算任务方面的影响。MIG是一个很好的技术,但是就目前显卡的价格来说对他的普及还是有很大的阻碍。不支持消费级的显卡,一张A100大概10万+,4张4090 6万多,我想没人会把一张A100分成4份用吧。

如果你对MIG有兴趣这里是官方文档:

https://avoid.overfit.cn/post/94d5e279ac7249638ae354a345ac4348

作者:Marcin Stasko

这篇关于GPU 虚拟化技术MIG简介和安装使用教程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/188038

相关文章

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali