hdu4081-次小生成树MST变形模板-Qin Shi Huang's National Road System

2023-10-11 07:40

本文主要是介绍hdu4081-次小生成树MST变形模板-Qin Shi Huang's National Road System,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

https://vjudge.net/problem/HDU-4081
给定你一个图,和每个点的坐标,问你建设n-1条路将它们链接起来后,可以减去其中一条边的花费,设其剩下的花费为B。而这条边对应的两个点的 点权大小为 A
要求A/B尽可能的大。。
思路:
这是用prim求次小生成树的方法。
维护path[][],作为表示i到在MST上的最长边。
并且 在一个最小生成树中,加一个边,一定构成环,然后你再减去一个。
那么他一定又是一个生成树(hiahia)。

这道题让维护去除一条 边后,去掉那个边的两个点的权值和生成树剩下的权值 比例尽可能的大。
所以 我们就想了一个办法,首先要分母尽可能的小,怎样让他最小呢。MST呀
那么 我们就是考虑 怎样在mst删除一个边,找到这样一个幸运的边了。
所以,直接枚举行么 emmmm我就是枚举写的,错了
因为发现样例1都没对。。(开始对了是完全的阴差阳错。。kruskal敲错了qwq)
那咋办捏。。
我们可以从 次小生成树中 学到一些东西(我tm之前不会啊qwq)
次小生成树的原理如图所示。
记录 mst中i-j路径中最长的边(废话,还有不在mst中的点么)
然后我们发现,次小生成树的诞生具有如此不可确定性,以至于每一对边都是有可能的。
所以我们 就要枚举每对边了。为了让其都有作为 次小的潜质,必须使其尽可能的小(。。。)
所以 我们就要 用类似dp的方法维护 那个Max数组了。
而维护的这个数组,正好为本题所用。。。。这里写图片描述
(图中,蓝和绿两个点之间的红边如果替换他们再mst上 最大的边,那么就可能得到次小,枚举两两,次小比得qwq。)并且那个最大的边是不可能有好多的,树无环。

   #include<cstdio>
#include<cstring>
#include<iostream>
#include<cmath>
#define INF 2147483647
#define N 1005
using namespace std;
/*
*/
double G[N][N],  minCost[N], pos[N][2], path[N][N], cost[N], ratio1, A, B;
int pre[N], vis[N], n;
bool used[N][N];
double Prim(){B=0;memset(vis, 0, sizeof(vis));memset(used, 0, sizeof(used));memset(path, 0, sizeof(path));vis[1]=1;for(int i=1; i<=n; ++i){minCost[i] = G[1][i];pre[i] = 1;}for(int i=1; i<n; ++i){int u=-1;for(int j=1; j<=n; ++j)if(!vis[j]){if(u==-1 || minCost[j]<minCost[u])u = j;}used[u][pre[u]]=used[pre[u]][u] = true;B += G[pre[u]][u];vis[u] = 1;for(int j=1; j<=n; ++j){if(vis[j]&&j!=u){path[u][j]=path[j][u]=max(path[j][pre[u]], minCost[u]);}if(!vis[j]){if(minCost[j]>G[u][j]){minCost[j] = G[u][j];pre[j] = u;}}}}return B;
}
int main(){int T;scanf("%d",&T);while(T--){scanf("%d",&n);memset(G, 0, sizeof(G));for(int i=1; i<=n; ++i)scanf("%lf%lf%lf",&pos[i][0],&pos[i][1],&cost[i]);for(int i=1; i<=n; ++i){for(int j=1; j<=n; ++j)if(i!=j){G[i][j] = getDist(pos[i][0],pos[i][1],pos[j][0],pos[j][1]);}}Prim();ratio1 = -1;for(int i=1; i<=n; ++i){for(int j=1; j<=n; ++j)if(i!=j){ratio1 = max(ratio1, (cost[i]+cost[j])/(B-path[i][j]));}}printf("%.2f\n", ratio1);}return 0;
}

这篇关于hdu4081-次小生成树MST变形模板-Qin Shi Huang's National Road System的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/186549

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

SQLServer中生成雪花ID(Snowflake ID)的实现方法

《SQLServer中生成雪花ID(SnowflakeID)的实现方法》:本文主要介绍在SQLServer中生成雪花ID(SnowflakeID)的实现方法,文中通过示例代码介绍的非常详细,... 目录前言认识雪花ID雪花ID的核心特点雪花ID的结构(64位)雪花ID的优势雪花ID的局限性雪花ID的应用场景

Django HTTPResponse响应体中返回openpyxl生成的文件过程

《DjangoHTTPResponse响应体中返回openpyxl生成的文件过程》Django返回文件流时需通过Content-Disposition头指定编码后的文件名,使用openpyxl的sa... 目录Django返回文件流时使用指定文件名Django HTTPResponse响应体中返回openp

SpringBoot集成EasyPoi实现Excel模板导出成PDF文件

《SpringBoot集成EasyPoi实现Excel模板导出成PDF文件》在日常工作中,我们经常需要将数据导出成Excel表格或PDF文件,本文将介绍如何在SpringBoot项目中集成EasyPo... 目录前言摘要简介源代码解析应用场景案例优缺点分析类代码方法介绍测试用例小结前言在日常工作中,我们经

python生成随机唯一id的几种实现方法

《python生成随机唯一id的几种实现方法》在Python中生成随机唯一ID有多种方法,根据不同的需求场景可以选择最适合的方案,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习... 目录方法 1:使用 UUID 模块(推荐)方法 2:使用 Secrets 模块(安全敏感场景)方法