ORB_SLAM2中特征提取之图像金字塔尺度不变性理解

2023-10-11 07:18

本文主要是介绍ORB_SLAM2中特征提取之图像金字塔尺度不变性理解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文参考:泡泡机器人提供的带注释的ORB_SLAM2源代码
转载本文请注明出处:
https://blog.csdn.net/RobotLife/article/details/87194017

在这里插入图片描述
在orb_slam2中,为了实现特征尺度不变性采用了图像金字塔,金字塔的缩放因子为1.2,。其思路就是对原始图形(第0层)依次进行1/1.2缩放比例进行降采样得到共计8张图片(包括原始图像),然后分别对得到的图像进行特征提取,并记录特征所在金字塔的第几层,这样得到一帧图像的特征点,如图1所示。
在这里插入图片描述
现在假设在第二层中有一特征点F,为了避免缩放带来特征点F在纵向的移动,为简化叙述,选择的特征点F位于图像中心,如图2所示。根据相机成像“物近像大,物远像小”的原理,如图2所示为相机成像的示意图。假设图1中摄像机原始图像即金字塔第0层对应图2中成像视野I0 ,则图1中图像金字塔第2层图像可以相应对应于图2中成像视野I2


其中特征点F所在patch的相应关系如图3所示。根据图2可以得到 结论1: d2 / d0 = 1.22


有了以上铺垫现在,来说说,尺度不变性,这里不直接说明,而是看看对于第m层上的一个特征点,其对应尺度不变时相机与特征点对应空间位置之间距离(简称物距)的范围。


假设第m层上有一特征点Fm,其空间位置与拍摄时相机中心的位置为dm ,显然这是原始图像缩放1/1.2m 倍后得到的特征点patch,考虑“物远像小”的成像特点,要使得该第m层特征点对应patch变为图像金字塔第0层中同样大小的patch,其相机与空间点的距离d=dm * 1.2m ,即尺度不变的最大物距dmax = dm*1.2m


要求尺度不变的最小物距则这样考虑:根据“物近像大”的成像特点,使得当前第m层的特征点移到第7层上则,真实相机成像图像得放大1.27-m倍,故对应最小物距dmin=dm *1.2m-7


orb_slam2中原始代码如下:
注意:上面变量与代码中变量的对应关系:
7 <–> nLevels-1
m <–> level
1.2m <–> levelScaleFactor
dmax <–> mfMaxDistance
dmin <–> mfMinDistance

void MapPoint::UpdateNormalAndDepth()
{map<KeyFrame*,size_t> observations;KeyFrame* pRefKF;cv::Mat Pos;{unique_lock<mutex> lock1(mMutexFeatures);unique_lock<mutex> lock2(mMutexPos);if(mbBad)return;observations=mObservations; // 获得观测到该3d点的所有关键帧pRefKF=mpRefKF;             // 观测到该点的参考关键帧Pos = mWorldPos.clone();    // 3d点在世界坐标系中的位置}if(observations.empty())return;cv::Mat normal = cv::Mat::zeros(3,1,CV_32F);int n=0;for(map<KeyFrame*,size_t>::iterator mit=observations.begin(), mend=observations.end(); mit!=mend; mit++){KeyFrame* pKF = mit->first;cv::Mat Owi = pKF->GetCameraCenter();cv::Mat normali = mWorldPos - Owi;normal = normal + normali/cv::norm(normali); // 对所有关键帧对该点的观测方向归一化为单位向量进行求和n++;} cv::Mat PC = Pos - pRefKF->GetCameraCenter(); // 参考关键帧相机指向3D点的向量(在世界坐标系下的表示)const float dist = cv::norm(PC); // 该点到参考关键帧相机的距离const int level = pRefKF->mvKeysUn[observations[pRefKF]].octave;const float levelScaleFactor =  pRefKF->mvScaleFactors[level];const int nLevels = pRefKF->mnScaleLevels; // 金字塔层数{unique_lock<mutex> lock3(mMutexPos);// 另见PredictScale函数前的注释mfMaxDistance = dist*levelScaleFactor;                           // 观测到该点的距离下限mfMinDistance = mfMaxDistance/pRefKF->mvScaleFactors[nLevels-1]; // 观测到该点的距离上限mNormalVector = normal/n;                                        // 获得平均的观测方向}
}

这篇关于ORB_SLAM2中特征提取之图像金字塔尺度不变性理解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/186442

相关文章

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

spring IOC的理解之原理和实现过程

《springIOC的理解之原理和实现过程》:本文主要介绍springIOC的理解之原理和实现过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、IoC 核心概念二、核心原理1. 容器架构2. 核心组件3. 工作流程三、关键实现机制1. Bean生命周期2.

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

深入理解Apache Kafka(分布式流处理平台)

《深入理解ApacheKafka(分布式流处理平台)》ApacheKafka作为现代分布式系统中的核心中间件,为构建高吞吐量、低延迟的数据管道提供了强大支持,本文将深入探讨Kafka的核心概念、架构... 目录引言一、Apache Kafka概述1.1 什么是Kafka?1.2 Kafka的核心概念二、Ka

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(

使用Python开发一个图像标注与OCR识别工具

《使用Python开发一个图像标注与OCR识别工具》:本文主要介绍一个使用Python开发的工具,允许用户在图像上进行矩形标注,使用OCR对标注区域进行文本识别,并将结果保存为Excel文件,感兴... 目录项目简介1. 图像加载与显示2. 矩形标注3. OCR识别4. 标注的保存与加载5. 裁剪与重置图像