EM@函数奇偶性性质@函数四则运算和复合运算后的奇偶性判断

2023-10-11 06:44

本文主要是介绍EM@函数奇偶性性质@函数四则运算和复合运算后的奇偶性判断,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • abstract
      • 奇函数和偶函数
    • 函数奇偶性性质
      • 函数记号声明
    • 四则运算性质
      • 和差
      • 乘积
    • 复合性质
      • 奇函数复合偶函数
      • 偶函数复合奇函数
      • 奇函数复合奇函数
      • 偶函数复合偶函数
    • 奇偶性小结🎈
      • 倍乘非零常数不改变奇偶性
    • 奇函数和偶函数表示定义域对称函数

abstract

  • 函数奇偶性性质:函数四则运算和复合运算后的奇偶性判断

奇函数和偶函数

  • f ( x ) f(x) f(x)的定义域关于原点对称,则当
    • f ( − x ) = f ( x ) f(-x)=f(x) f(x)=f(x),称 f ( x ) f(x) f(x)为偶函数
    • f ( − x ) = − f ( x ) f(-x)=-f(x) f(x)=f(x),称 f ( x ) f(x) f(x)为奇函数

函数奇偶性性质

函数记号声明

  • o ( x ) , o i ( x ) o(x),o_{i}(x) o(x),oi(x)均表示奇函数
  • e ( x ) , e i ( x ) e(x),e_i(x) e(x),ei(x)均表示偶函数

四则运算性质

和差

  • 偶(奇)函数相加得到的新函数仍为偶(奇)函数

  • 奇函数相加减,得到的新函数还是奇函数

    • h 1 ( x ) = o 1 ( x ) + o 2 ( x ) h_1(x)=o_1(x)+o_2(x) h1(x)=o1(x)+o2(x)
      • h 1 ( − x ) = o 1 ( − x ) + o 2 ( − x ) = − o 1 ( x ) − o 2 ( x ) = − ( o 1 ( x ) + o 2 ( x ) ) = − h 1 ( x ) h_1(-x)=o_1(-x)+o_2(-x)=-o_1(x)-o_2(x)=-(o_1(x)+o_2(x))=-h_1(x) h1(x)=o1(x)+o2(x)=o1(x)o2(x)=(o1(x)+o2(x))=h1(x)
    • h 1 ( x ) = o 1 ( x ) − o 2 ( x ) h_1(x)=o_1(x)-o_2(x) h1(x)=o1(x)o2(x)
      • h 1 ( − x ) = o 1 ( − x ) − o 2 ( − x ) = − o 1 ( x ) + o 2 ( x ) = − h 1 ( x ) h_1(-x)=o_1(-x)-o_2(-x)=-o_1(x)+o_2(x)=-h_1(x) h1(x)=o1(x)o2(x)=o1(x)+o2(x)=h1(x)
    • 合起来写: h 2 ( x ) = o 1 ( x ) ± o 2 ( x ) h_2(x)=o_1(x)\pm o_2(x) h2(x)=o1(x)±o2(x)
      • h 1 ( − x ) = o 1 ( − x ) ± o 2 ( − x ) h_1(-x)=o_1(-x)\pm o_2(-x) h1(x)=o1(x)±o2(x)= − o 1 ( x ) ± ( − o 2 ( x ) ) = − h 1 ( x ) -o_1(x)\pm(-o_2(x))=-h_1(x) o1(x)±(o2(x))=h1(x)
  • 偶函数相加减得到的新函数仍为偶函数

    • h 2 ( x ) = e 1 ( x ) ± e 2 ( x ) h_2(x)=e_1(x)\pm e_2(x) h2(x)=e1(x)±e2(x)
      • h 2 ( − x ) = e 1 ( − x ) ± e 2 ( − x ) = ( e 1 ( x ) ± ( e 2 ( x ) ) = h 2 ( x ) h_2(-x)=e_1(-x)\pm e_2(-x)=(e_1(x)\pm (e_2(x))=h_2(x) h2(x)=e1(x)±e2(x)=(e1(x)±(e2(x))=h2(x)
  • 奇函数 ± \pm ±偶函数的结果没有一般性的定论

乘积

  1. h 1 ( x ) = o ( x ) e ( x ) h_1(x)=o(x)e(x) h1(x)=o(x)e(x)
    • h 1 ( − x ) = o ( − x ) e ( − x ) = − o ( x ) e ( x ) = − h 1 ( x ) h_1(-x)=o(-x)e(-x)=-o(x)e(x)=-h_1(x) h1(x)=o(x)e(x)=o(x)e(x)=h1(x)
  2. h 2 ( x ) = o 1 ( x ) o 2 ( x ) h_2(x)=o_1(x)o_2(x) h2(x)=o1(x)o2(x)
    • h 2 ( − x ) = o 1 ( − x ) o 2 ( − x ) = ( − o 1 ( x ) ) ( − o 2 ( x ) ) = o 1 ( x ) o 2 ( x ) = h 2 ( x ) h_2(-x)=o_1(-x)o_2(-x)=(-o_1(x))(-o_2(x))=o_1(x)o_2(x)=h_2(x) h2(x)=o1(x)o2(x)=(o1(x))(o2(x))=o1(x)o2(x)=h2(x)
  3. h 3 ( x ) = e 1 ( x ) e 2 ( x ) h_3(x)=e_1(x)e_2(x) h3(x)=e1(x)e2(x)
    • h 3 ( − x ) = e 1 ( − x ) e 2 ( − x ) = e 1 ( x ) e 2 ( x ) = h 3 ( x ) h_3(-x)=e_1(-x)e_2(-x)=e_1(x)e_2(x)=h_3(x) h3(x)=e1(x)e2(x)=e1(x)e2(x)=h3(x)

上述三条分别表明:

  • 奇函数乘偶函数结果为奇函数
  • 偶函数乘偶函数结果为偶函数
  • 奇函数乘奇函数结果为偶函数

  • 令: y ( x ) = f ( x ) g ( x ) y(x)=\frac{f(x)}{g(x)} y(x)=g(x)f(x), y ( − x ) = f ( − x ) g ( − x ) y(-x)=\frac{f(-x)}{g(-x)} y(x)=g(x)f(x)
    1. y ( x ) = o 1 ( x ) o 2 ( x ) y(x)=\frac{o_1(x)}{o_2(x)} y(x)=o2(x)o1(x), y ( − x ) = y ( x ) y(-x)=y(x) y(x)=y(x)
    2. y ( x ) = o ( x ) e ( x ) y(x)=\frac{o(x)}{e(x)} y(x)=e(x)o(x),或 y ( x ) = e ( x ) o ( x ) y(x)=\frac{e(x)}{o(x)} y(x)=o(x)e(x),都有 y ( − x ) = − y ( x ) y(-x)=-y(x) y(x)=y(x)
    3. y ( x ) = e 1 ( x ) e 2 ( x ) y(x)=\frac{e_1(x)}{e_2(x)} y(x)=e2(x)e1(x),则 y ( − x ) = y ( x ) y(-x)=y(x) y(x)=y(x)
    • 分子分母奇偶性相同时,结果为偶函数
    • 分子分母奇偶性不同时,结果为奇函数
  • 例如:
    • sin ⁡ x x \frac{\sin{x}}{x} xsinx为偶函数,而 sin ⁡ x x 2 \frac{\sin{x}}{x^2} x2sinx为奇函数

复合性质

  • y = f ( u ) ; u = g ( x ) y=f(u);u=g(x) y=f(u);u=g(x), y ( x ) = ( f ∘ g ) ( x ) = f ( g ( x ) ) y(x)=(f\circ g)(x)=f(g(x)) y(x)=(fg)(x)=f(g(x))的奇偶性

    • 例如, f ( u ) = 1 u f(u)=\frac{1}{u} f(u)=u1; u = g ( x ) = x 2 u=g(x)=x^2 u=g(x)=x2
    • 显然 f ( u ) f(u) f(u)是个奇函数(反比例函数); g ( x ) g(x) g(x)是偶函数; y ( x ) = 1 x 2 y(x)=\frac{1}{x^2} y(x)=x21则是偶函数
  • 为了便于提高推导效率,沿用前面的 o ( x ) , e ( x ) o(x),e(x) o(x),e(x)的含义(分别表示奇函数和偶函数)

奇函数复合偶函数

y 1 ( x ) = o ( e ( x ) ) y_1(x)=o(e(x)) y1(x)=o(e(x))

  • y 1 ( − x ) = o ( e ( − x ) ) y_1(-x)=o(e(-x)) y1(x)=o(e(x))= o ( e ( x ) ) = y ( x ) o(e(x))=y(x) o(e(x))=y(x)
  • 特例助记: y ( u ) = u ; u = x 2 ; y ( x ) = x 2 ( 偶函数 ) y(u)=u;u=x^2;y(x)=x^2(偶函数) y(u)=u;u=x2;y(x)=x2(偶函数)

偶函数复合奇函数

y 1 ( x ) = e ( o ( x ) ) y_1(x)=e(o(x)) y1(x)=e(o(x))

  • y 1 ( − x ) = e ( o ( − x ) ) = e ( − o ( x ) ) = e ( o ( x ) ) = y 1 ( x ) y_1(-x)=e(o(-x))=e(-o(x))=e(o(x))=y_1(x) y1(x)=e(o(x))=e(o(x))=e(o(x))=y1(x)

奇函数复合奇函数

y 2 ( x ) = o 1 ( o 2 ( x ) ) y_2(x)=o_1(o_2(x)) y2(x)=o1(o2(x))

  • y 2 ( − x ) = o 1 ( o 2 ( − x ) ) = o 1 ( − o 2 ( x ) ) = − o 1 ( o 2 ( x ) ) = − y 2 ( x ) y_2(-x)=o_1(o_2(-x))=o_1(-o_2(x))=-o_1(o_2(x))=-y_2(x) y2(x)=o1(o2(x))=o1(o2(x))=o1(o2(x))=y2(x)

偶函数复合偶函数

y 3 ( x ) = e 1 ( e 2 ( x ) ) y_3(x)=e_1(e_2(x)) y3(x)=e1(e2(x))

  • y 3 ( − x ) = e 1 ( e 2 ( − x ) ) = e 1 ( e 2 ( x ) ) = y 3 ( x ) y_3(-x)=e_1(e_2(-x))=e_1(e_2(x))=y_3(x) y3(x)=e1(e2(x))=e1(e2(x))=y3(x)
    • 其中 , 记 u = e 2 ( x ) ; e 1 ( − e 2 ( x ) ) = e 1 ( − u ) = e 1 ( u ) = e 1 ( e 2 ( x ) ) 其中,记u=e_2(x);e_1(-e_2(x))=e_1(-u)=e_1(u)=e_1(e_2(x)) 其中,u=e2(x);e1(e2(x))=e1(u)=e1(u)=e1(e2(x))

奇偶性小结🎈

  • 奇函数 ± \pm ± 奇函数=奇函数

  • 偶函数 ± \pm ± 偶函数=偶函数

  • 奇函数 ± \pm ± 偶函数(具体情况具体分析)

  • 乘法和除法运算得到的新函数的奇偶性判定方式十分一致

    • 奇偶性相同的函数乘积或商是偶函数
    • 奇偶性不同的函数乘积或商是奇函数
    • 乘以或除以一个偶函数不改变原函数的奇偶性
  • 仅在奇函数相互复合的情况下才得到奇函数

    • 偶函数与任何奇函数或偶函数复合都得到偶函数,
    • 反之亦然:任何奇函数或偶函数与偶函数复合都得到偶函数

倍乘非零常数不改变奇偶性

  • 设k为非零常数 t ( x ) = k f ( x ) ; t ( − x ) = k f ( − x ) t(x)=kf(x);t(-x)=kf(-x) t(x)=kf(x);t(x)=kf(x),容易通过奇偶性定义验证, t ( x ) t(x) t(x)的奇偶性和 f ( x ) f(x) f(x)一致;
  • 事实上,常数是特殊函数(常数函数),而且是偶函数,从而 f ( x ) f(x) f(x)乘偶函数不改变奇偶性

奇函数和偶函数表示定义域对称函数

  • 定义域关于原点对称的普通函数 f ( x ) f(x) f(x),可以表示为奇函数偶函数之和

  • f ( x ) = 1 2 h ( x ) + 1 2 g ( x ) f(x)=\frac{1}{2}h(x)+\frac{1}{2}g(x) f(x)=21h(x)+21g(x), ( D f = ( − l , l ) ) (D_f=(-l,l)) (Df=(l,l))

    • h ( x ) = f ( x ) − f ( − x ) h(x)=f(x)-f(-x) h(x)=f(x)f(x);

    • g ( x ) = f ( x ) + f ( − x ) g(x)=f(x)+f(-x) g(x)=f(x)+f(x)

    • h ( x ) , g ( x ) h(x),g(x) h(x),g(x)分别是奇函数和偶函数

      • h ( − x ) = − h ( x ) h(-x)=-h(x) h(x)=h(x)
      • g ( − x ) = g ( x ) g(-x)=g(x) g(x)=g(x)
  • 所以结论成立

这篇关于EM@函数奇偶性性质@函数四则运算和复合运算后的奇偶性判断的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/186281

相关文章

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

postgresql使用UUID函数的方法

《postgresql使用UUID函数的方法》本文给大家介绍postgresql使用UUID函数的方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录PostgreSQL有两种生成uuid的方法。可以先通过sql查看是否已安装扩展函数,和可以安装的扩展函数

MySQL字符串常用函数详解

《MySQL字符串常用函数详解》本文给大家介绍MySQL字符串常用函数,本文结合实例代码给大家介绍的非常详细,对大家学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录mysql字符串常用函数一、获取二、大小写转换三、拼接四、截取五、比较、反转、替换六、去空白、填充MySQL字符串常用函数一、

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)

MySql基本查询之表的增删查改+聚合函数案例详解

《MySql基本查询之表的增删查改+聚合函数案例详解》本文详解SQL的CURD操作INSERT用于数据插入(单行/多行及冲突处理),SELECT实现数据检索(列选择、条件过滤、排序分页),UPDATE... 目录一、Create1.1 单行数据 + 全列插入1.2 多行数据 + 指定列插入1.3 插入否则更

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串