(Python数字图像处理)彩色图像处理---色调和彩色校正以及直方图均衡化

本文主要是介绍(Python数字图像处理)彩色图像处理---色调和彩色校正以及直方图均衡化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、色调和彩色校正
  • 二、色调校正及彩色平衡
  • 三、彩色直方图均衡化


-基于Python+OpenCV,实验环境:pycharm+anaconda,参考《数字图像处理》冈萨雷斯第四版(初学图像处理和Python,欢迎指出错误~)

一、色调和彩色校正

彩色图像可以看做不同彩色通道图像的叠加,每一个通道都可以同灰度图像处理一样进行操作。由于numpy的矩阵操作功能很强大,所以处理彩色图像也是比较方便的。

若采用伽马变换,图像较亮,应该选择γ>1,压缩高灰度级,图像较暗,应选择γ<1,扩展低灰度级,增强对比度。
若采用S函数(对比度拉伸变换函数),选择合适的参数(斜率),能得到较高的对比度,S函数表达式为:s=T(r)=1/(1+(M/r)^E)
s是输出灰度,r是输入灰度,M是控制的灰度中值,E控制函数斜率。形状如下:
在这里插入图片描述
代码如下:

# -*- coding:utf-8 -*-
"""
作者:YJH
日期:20211105"""
import matplotlib.pyplot as plt
import cv2 as cv
import numpy as np
from 彩色空间转换 import hsi2rgb              # 从前面写的一个文件里导入自定义的两个函数
from 彩色空间转换 import rgb2hsi# 显示汉字用
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# 定义坐标数字字体及大小
def label_def():plt.xticks(fontproperties='Times New Roman', size=8)plt.yticks(fontproperties='Times New Roman', size=8)# plt.axis('off')                                      # 关坐标,可选if __name__ == '__main__':# 读取图片img_orig = cv.imread('top_ left_flower.tif', 1)               # 读取彩色图片
# ------------------------------------------------色调校正---------------------------------------------------------## 伽马变换处理img_gama = np.power(img_orig.astype(np.float32), 1.5)         # 图像较亮,若采用幂率变换,γ>1,压缩高灰度级temp1 = img_gama - np.min(img_gama)img_gama = temp1/np.max(temp1)# 对比度拉伸变换函数med = np.median(img_orig.astype(np.float32))                    # 获取中值Mimg_temp = 1 / (1 + np.power((140/(img_orig+1e-6)), 4.5))       # 4.5为斜率,交互式选择(感觉med效果不如140)temp2 = img_temp - np.min(img_temp)                             # 标定到[0~255],才能进行BGR2RGBimg_con_str = np.uint8(255*(temp2/np.max(temp2)))# 显示所用的变换函数x1 = np.linspace(img_orig.min(), img_orig.max(), num=200)y1 = np.power(x1, 1.5)                                       # 伽马函数x2 = np.linspace(img_orig.min(), img_orig.max(), num=200)y2 = 1 / (1 + np.power((med/(x2+1e-6)), 4.5))               # 对比度拉伸函数plt.subplot(231), plt.title('原图像'), plt.imshow(cv.cvtColor(img_orig, cv.COLOR_BGR2RGB)), plt.axis('off')plt.subplot(232), plt.title('伽马变换'), plt.imshow(cv.cvtColor(img_gama, cv.COLOR_BGR2RGB)), plt.axis('off')plt.subplot(233), plt.title('对比度拉伸'), plt.imshow(cv.cvtColor(img_con_str, cv.COLOR_BGR2RGB)), plt.axis('off')plt.subplot(235), plt.title('s=r**(1.5)'), plt.plot(x1, y1), plt.grid(), label_def()plt.subplot(236), plt.title('s=1/(1+(M/r)**4)'), plt.plot(x2, y2), plt.grid(), label_def()plt.show()

效果如下:
在这里插入图片描述

二、色调校正及彩色平衡

只经过色调校正并不总能得到满意的结果。常用的处理方法是:
(1)色调校正;(2)彩色平衡校正。
比如下图较暗,所以用γ<1(0.5)的伽马变换来扩展低灰度级。但变换后图像中(前方石头和杂草)偏红色,所以转到CMY空间,对M分量进行平衡。代码如下:(用到的rgb2hsi和hsi2rgb是我自己定义的两个彩色空间变换函数,可以见我另一篇文章彩色空间HSI和RGB变换)

# 接上面的代码
# --------------------------------------------彩色平衡---------------------------------------------------------------#img_stone = cv.imread('bottom_left_stream.tif', 1)# 伽马变换处理stone_gama = np.power(img_stone.astype(np.float32), 0.5)         # 图像较暗,若采用幂率变换,γ<1,拉伸低灰度级,交互式选择temp = stone_gama - np.min(stone_gama)stone_gama = temp/np.max(temp)img_cmy = 1 - cv.cvtColor(stone_gama, cv.COLOR_BGR2RGB)c, m, y = cv.split(img_cmy)# print(m.shape)m_gama = np.power(m.astype(np.float32), 1.08)                   # 深红色较多,压缩一下temp_m = m_gama - np.min(m_gama)m_gama = (temp_m/(np.max(temp_m)))out_stone = 1 - cv.merge((c, m_gama, y))plt.subplot(131), plt.title('原图像'), plt.imshow(cv.cvtColor(img_stone, cv.COLOR_BGR2RGB)), plt.axis('off')plt.subplot(132), plt.title('伽马变换'), plt.imshow(cv.cvtColor(stone_gama, cv.COLOR_BGR2RGB)), plt.axis('off')plt.subplot(133), plt.title('彩色平衡(深红色)'), plt.imshow(out_stone), plt.axis('off')plt.show()

效果如下(好像不明显还行吧
在这里插入图片描述

三、彩色直方图均衡化

同灰度图一样,可以直接用函数cv2.equalizeHist(img),操作RGB每个平面或者HSI空间的I分量。但是这个函数操作对象灰度级要是8bit的,对于[0,1]的灰度级要标定到[0,255],要注意一下。
HSI空间中I分量直方图均衡化后,虽不改变H和S分量,但会影响图像整体颜色。常用处理是先均衡化,再调整饱和度分量S。
代码如下:

# ------------------------彩色直方图均衡化----------------------------#img_caster = cv.imread('caster_stand_original.tif', 1)h, s, i, caster = rgb2hsi(img_caster)img = np.float32(caster)i = np.uint8(255*i)equ_i = (cv.equalizeHist(i))/255.0                                        # 均衡化亮度分量# plt.subplot(121), plt.imshow(i, 'gray')# plt.subplot(122), plt.imshow(equ_i, 'gray')# plt.show()img_equ1 = hsi2rgb(cv.merge((h, s, equ_i)))# add_s = np.where((s*2) > 1, s, (s*1.5))                                # 增饱和度add_s = np.power(s, 0.85)img_equ2 = hsi2rgb(cv.merge((h, add_s, equ_i)))plt.subplot(131), plt.title('原图像'), plt.imshow(cv.cvtColor(img_caster, cv.COLOR_BGR2RGB)), plt.axis('off')plt.subplot(132), plt.title('I分量直方图均衡'), plt.imshow(img_equ1), plt.axis('off')plt.subplot(133), plt.title('均衡I+增大S'), plt.imshow(img_equ2), plt.axis('off')plt.show()

效果如下(找不同…):
在这里插入图片描述
欢迎大家批评指正

这篇关于(Python数字图像处理)彩色图像处理---色调和彩色校正以及直方图均衡化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/186158

相关文章

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring Boot @RestControllerAdvice全局异常处理最佳实践

《SpringBoot@RestControllerAdvice全局异常处理最佳实践》本文详解SpringBoot中通过@RestControllerAdvice实现全局异常处理,强调代码复用、统... 目录前言一、为什么要使用全局异常处理?二、核心注解解析1. @RestControllerAdvice2

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互