拉格朗日对偶性问题-《统计学习方法》学习笔记

2023-10-11 04:48

本文主要是介绍拉格朗日对偶性问题-《统计学习方法》学习笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0. 内容介绍

        在约束最优化问题中, 常常利用拉个朗日对偶性将原始问题转化为对偶问题,通过解对偶问题而得到原始问题的解,该方法应用在很多的统计学习方法中。例如在上一篇文章中(http://blog.csdn.net/robin_xu_shuai/article/details/52791306)所说的最大熵模型。在学习最大熵模型中我们看到,需要求解满足所有已知条件并且使得熵最大的模型,也就是求解问题带约束的极值问题,其解决方法一般采用拉格朗日对偶原理。下面简单介绍拉格朗日对偶原理。

1.原始问题

   约束条件可以分成不等式约束条件和等式约束条件,只有等式约束条件的问题解决方法是直接将等式约束加入原问题构造出拉格朗日函数,然后求导即可。现在考虑带不等式约束和等式约束的极值问题如何构造拉格朗日函数求解。

假设f(x), ci(x), hj(x)是定义在Rn上的连续可微函数,约束最优化问题如下:

称此约束最优化问题为原始问题。

首先,引入拉格朗日函数:


这里\alpha和\beta是拉格朗日乘子。此时我们定义(引入)一个函数,这个函数的目的是建立拉格朗日函数和原始问题中的f(x)的关系。

分析这个定义的函数:此时给定某个x,如果x违反原始问题的约束条件,即如果存在某个i使得c_i(w)>0或者存在某个j使得h_j(w)≠0,那么就有:


(因为如果某个i使得约束ci(x)>0, 则可以令αi取正无穷, 如果某个j使得hj(x)≠0, 则可以令βj取正无穷, 而将其他的剩余的拉格朗日乘子取0.)。而相反,如果x满足原问题的约束条件,可得θp(x) =f(x),因此得到:


(这样就将原来的约束问题变成了现在的无约束问题)

所以当我们现在考虑以下的极小化问题时就与原始的最优化问题(4)(5)(6)是等价的.有相同的解。


2.对偶问题

再引入一个公式,将其定义为α, β的函数:


这样将拉格朗日函数转化为了两个参数的函数,并考虑在此基础上的极大化:


我们把这个问题称为原始问题的对偶问题。和原始问题对比只是交换了最大化和最小化的次序,但是解却不一定是相同的,在满足一定的条件下,原始问题和对偶问题的解相同。





这篇关于拉格朗日对偶性问题-《统计学习方法》学习笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/185627

相关文章

Android 12解决push framework.jar无法开机的方法小结

《Android12解决pushframework.jar无法开机的方法小结》:本文主要介绍在Android12中解决pushframework.jar无法开机的方法,包括编译指令、框架层和s... 目录1. android 编译指令1.1 framework层的编译指令1.2 替换framework.ja

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

在.NET平台使用C#为PDF添加各种类型的表单域的方法

《在.NET平台使用C#为PDF添加各种类型的表单域的方法》在日常办公系统开发中,涉及PDF处理相关的开发时,生成可填写的PDF表单是一种常见需求,与静态PDF不同,带有**表单域的文档支持用户直接在... 目录引言使用 PdfTextBoxField 添加文本输入域使用 PdfComboBoxField

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

Pandas中统计汇总可视化函数plot()的使用

《Pandas中统计汇总可视化函数plot()的使用》Pandas提供了许多强大的数据处理和分析功能,其中plot()函数就是其可视化功能的一个重要组成部分,本文主要介绍了Pandas中统计汇总可视化... 目录一、plot()函数简介二、plot()函数的基本用法三、plot()函数的参数详解四、使用pl

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义