积分电路原理之新解——放大器与电容的变身

2023-10-10 21:30

本文主要是介绍积分电路原理之新解——放大器与电容的变身,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在网上看到一篇对积分电路以及如何理解电容作用相当不错的文章,可以作为定性研究积分电路的一种方法,转载供学习参考。

将反相放大器中的反馈电阻,换作电容,便成为如图一所示的积分放大器电路。对于电阻,貌似是比较实在的东西,电路输出状态可以一目了然,换作电容,由于充、放电的不确定性,电容又是个较“虚”的物件,其电路输出状态,就有点不易琢磨了。


图一 积分电路的构成及信号波形图
  想弄明白其输出状态,得先了解电容的脾性。电容基本的功能是充、放电,是个储能元件。对变化的电压敏感(反应强烈),对直流电迟钝(甚至于无动于衷),有通交流隔直流的特性。对看待世界万物都是呈现电阻特性的人来说,也可以将电容看成会变化的电阻,由此即可解开积分电路的输出之谜。
   依据能量守恒定律,能量不能无缘无故地产生,也不能无缘无故地消失,由之导出电容两端电压不能突变的定理。充电瞬间,电容的两极板之间尚未积累起电荷,故能维持两端电压为零的原状态,但此瞬间充电电流为最大,可以等效为极小的电阻甚至导线,如果说电容充电瞬间是短路的,也未尝不可,比如变频器主电路中,对回路电容要有限流充电措施,正是这个道理;电容充电期间,随时间的推移,充电电压逐渐升高,而充电电流逐渐减小,也可以认为此时电容的等效电阻由最小往大处变化;电容充满电以后,两端电压最高,但充电电流基本为零,此时电容等效为最大值电阻,对于直流电来说,甚至可以等效于断路,无穷大的电阻了。
  总结以上,在电容充电过程中,有等效为最小电阻或导线、等效为由小变大的电阻、等效为最大电阻或断路等三个状态。正是电容的该变化特性,可以使积分放大器电路变身为如图二所示的三种身份。


图二 积分电路工作过程中的“三变身”
  参见图二。
   1、电压跟随器。在输入信号的t0(正向跳变)时刻,电容充电电流最大,等效电阻最小(或视为导线),该电路即刻变身为电压跟随器电路,由电路的虚地特性可知,输出尚为0V。
   2、反相放大器。在输入信号的t0时刻之后平顶期间,电容处于较为平缓的充电过程,其等效RP经历小于R、等于R和大于R的三个阶段,因而在放大过程中,在放大特性的作用下,其实又经历了反相衰减、反相、反相放大等三个小过程。而无论是衰减、反相还是反相放大,都说明在此阶段,积分电路其实是扮演着线性放大器的角色。
   3、在输入信号平项期间的后半段,电容的充电过程已经结束,充电电流为零,电容相当于断路,积分放大器由闭环放大到开环比较状态,电路进而变身为电压比较器。此际输出值为负供电值。
   都说人会变脸,其实电路也能变身啊。在电容操控之下,放大器瞬间就变换了三种身份。能看穿积分放大器的这三种身份,积分放大器的“真身”就无从遁形了。放大器,其实是在“放大不离比较,比较不离放大”的圈子中跳着玩儿,这个,留等我以后再说。

这篇关于积分电路原理之新解——放大器与电容的变身的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/183206

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、