数仓DWS层之旁路缓存优化

2023-10-10 21:10
文章标签 优化 缓存 数仓 dws 旁路

本文主要是介绍数仓DWS层之旁路缓存优化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 优化原因:

外部数据源的查询常常是流式计算的性能瓶颈。以本程序为例,每次查询都要连接 Hbase,数据传输需要做序列化、反序列化,还有网络传输,严重影响时效性。可以通过旁路缓存对查询进行优化。

旁路缓存模式是一种非常常见的按需分配缓存模式。所有请求优先访问缓存,若缓存命中,直接获得数据返回给请求者。如果未命中则查询数据库,获取结果后,将其返回并写入缓存以备后续请求使用。

(1)旁路缓存策略应注意两点

a)缓存要设过期时间,不然冷数据会常驻缓存,浪费资源。

b)要考虑维度数据是否会发生变化,如果发生变化要主动清除缓存

(2)缓存的选型

一般两种:堆缓存或者独立缓存服务(memcache,redis)

堆缓存,性能更好,效率更高,因为数据访问路径更短。但是难于管理,其它进程无法维护缓存中的数据。

独立缓存服务(redis,memcache),会有创建连接、网络IO等消耗,较堆缓存略差,但性能尚可。独立缓存服务便于维护和扩展,对于数据会发生变化且数据量很大的场景更加适用,此处选择独立缓存服务,将 redis 作为缓存介质

(3)实现步骤

从缓存中获取数据。

① 如果查询结果不为 null,则返回结果。

② 如果缓存中获取的结果为 null,则从 Phoenix 表中查询数据。

a)如果结果非空则将数据写入缓存后返回结果。

b)否则提示用户:没有对应的维度数据

注意:缓存中的数据要设置超时时间,本程序设置为 1 天。此外,如果原表数据发生变化,要删除对应缓存。为了实现此功能,需要对维度分流程序做如下修改:

i)在 MyBroadcastFunction的 processElement 方法内将操作类型字段添加到 JSON 对象中。

ii)在 DimUtil 工具类中添加 deleteCached 方法,用于删除变更数据的缓存信息。

iii)在 MyPhoenixSink 的 invoke 方法中补充对于操作类型的判断,如果操作类型为 update 则清除缓存。

图解:

 

 代码方面:

思路:当我们需要使用外部数据源的表数据时,在第一次使用的时候,从Phoenix获取维表数据,并且将这些维表数据写入Redis缓存中,在后面我们需要再次使用维表数据的时候,我们先可以从Redis中获取,如果Redis中没有,在从Phoenix中获取维表数据并且写入Redis缓存中,主要这里要设置缓存过期时间,要不然会造成冷数据,而浪费资源。当我们修改维表中的数据时,要先删除Redis缓存中的数据,然后再对Phoenix进行更新。

(1)创建连接池(与Phoenix建立连接,即与HBASE建立连接)

package com.atguigu.utils;import com.alibaba.druid.pool.DruidDataSource;
import com.atguigu.common.GmallConfig;public class DruidDSUtil {private static DruidDataSource druidDataSource=null;public static DruidDataSource createDataSource() {// 创建连接池druidDataSource = new DruidDataSource();// 设置驱动全类名druidDataSource.setDriverClassName(GmallConfig.PHOENIX_DRIVER);// 设置连接 urldruidDataSource.setUrl(GmallConfig.PHOENIX_SERVER);// 设置初始化连接池时池中连接的数量druidDataSource.setInitialSize(5);// 设置同时活跃的最大连接数druidDataSource.setMaxActive(20);// 设置空闲时的最小连接数,必须介于 0 和最大连接数之间,默认为 0druidDataSource.setMinIdle(1);// 设置没有空余连接时的等待时间,超时抛出异常,-1 表示一直等待druidDataSource.setMaxWait(-1);// 验证连接是否可用使用的 SQL 语句druidDataSource.setValidationQuery("select 1");// 指明连接是否被空闲连接回收器(如果有)进行检验,如果检测失败,则连接将被从池中去除// 注意,默认值为 true,如果没有设置 validationQuery,则报错// testWhileIdle is true, validationQuery not setdruidDataSource.setTestWhileIdle(true);// 借出连接时,是否测试,设置为 false,不测试,否则很影响性能druidDataSource.setTestOnBorrow(false);// 归还连接时,是否测试druidDataSource.setTestOnReturn(false);// 设置空闲连接回收器每隔 30s 运行一次druidDataSource.setTimeBetweenEvictionRunsMillis(30 * 1000L);// 设置池中连接空闲 30min 被回收,默认值即为 30 mindruidDataSource.setMinEvictableIdleTimeMillis(30 * 60 * 1000L);return druidDataSource;}
}

 (二)先判断Redis缓存是否有数据,如果没有,则从Phoenix获取维表数据并且将在Phoenix中查到的数据放入Redis缓存中

package com.atguigu.utils;import com.alibaba.druid.pool.DruidDataSource;
import com.alibaba.druid.pool.DruidPooledConnection;
import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.common.GmallConfig;
import redis.clients.jedis.Jedis;import java.lang.reflect.InvocationTargetException;
import java.sql.Connection;
import java.sql.SQLException;
import java.util.List;public class DimUtil {//启动Redis//   bin/redis-server.sh ./redis.conf//   bin/redis-cli -h hadoop107 --rawpublic static JSONObject getDimInfo(Connection connection,String tableName,String key) throws SQLException, InvocationTargetException, InstantiationException, IllegalAccessException {//先查询RedisJedis jedis = JedisUtil.getJedis();String redisKey="DIM"+tableName+":"+key;String dimJsonStr = jedis.get(redisKey);//如果Redis缓存中有数据,则从缓存中读取数据,如果没有,则从Phoenix(Hbase)中获取数据if(dimJsonStr!=null){//重置过期时间jedis.expire(redisKey,24*60*60);//归还连接jedis.close();//返回维表数据return JSON.parseObject(dimJsonStr);}else{//拼接SQL语句String querySql="select * from " + GmallConfig.HBASE_SCHEMA +"."+tableName+"where id="+ key+"'";System.out.println("querySql>>>"+querySql);//查询数据List<JSONObject> queryList = JdbcUtil.queryList(connection, querySql, JSONObject.class, false);//将从Phoenix查询到的数据写入RedisJSONObject dimInfo = queryList.get(0);jedis.set(redisKey, dimInfo.toJSONString());//设置过期时间jedis.expire(redisKey,24*60*60);//归还连接jedis.close();//返回结果return dimInfo;}}//删除Redis中的缓存数据public static void delDimInfo(String tableName,String key){//获取连接Jedis jedis = JedisUtil.getJedis();//删除数据jedis.del("DIM"+tableName+":"+key);//归还连接jedis.close();}}

(三)当维表数据更新时,需要删除Redis对应的维表数据(删除方法在上一段代码中)

package com.atguigu.app.func;import com.alibaba.druid.pool.DruidDataSource;
import com.alibaba.druid.pool.DruidPooledConnection;
import com.alibaba.fastjson.JSONObject;
import com.atguigu.utils.DimUtil;
import com.atguigu.utils.DruidDSUtil;
import com.atguigu.utils.PhoenixUtil;import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.functions.sink.RichSinkFunction;import java.sql.SQLException;public class DimSinkFunction extends RichSinkFunction<JSONObject> {private static DruidDataSource druidDataSource=null;@Overridepublic void open(Configuration parameters) throws Exception {druidDataSource = DruidDSUtil.createDataSource();}/*主流数据value数据格式:(消费的topic_db){"database":"gmall-211126-flink","table":"base_trademark","type":"insert","ts":1652499161,"xid":167,"commit":true,"data":{"id":13,"tm_name":"atguigu","logo_url":"/aaa/aaa"}}*/@Overridepublic void invoke(JSONObject value, Context context) throws Exception {//获取连接DruidPooledConnection connection = druidDataSource.getConnection();String sinkTable=value.getString("sinkTable");JSONObject data=value.getJSONObject("data");//获取数据类型String type=value.getString("type");//如果为更新类型,则需要删除Redis中的数据if("update".equals(type)){DimUtil.delDimInfo(sinkTable.toUpperCase(),data.getString("id"));}//写出数据PhoenixUtil.upsertValues(connection,sinkTable,data);//归还连接connection.close();}
}

这篇关于数仓DWS层之旁路缓存优化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/183110

相关文章

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

Java实现本地缓存的常用方案介绍

《Java实现本地缓存的常用方案介绍》本地缓存的代表技术主要有HashMap,GuavaCache,Caffeine和Encahche,这篇文章主要来和大家聊聊java利用这些技术分别实现本地缓存的方... 目录本地缓存实现方式HashMapConcurrentHashMapGuava CacheCaffe

如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)

《如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)》:本文主要介绍如何更改pycharm缓存路径和虚拟内存分页文件位置(c盘爆红)问题,具有很好的参考价值,希望对大家有所帮助,如有... 目录先在你打算存放的地方建四个文件夹更改这四个路径就可以修改默认虚拟内存分页js文件的位置接下来从高级-

PyCharm如何更改缓存位置

《PyCharm如何更改缓存位置》:本文主要介绍PyCharm如何更改缓存位置的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录PyCharm更改缓存位置1.打开PyCharm的安装编程目录2.将config、sjsystem、plugins和log的路径

JSR-107缓存规范介绍

《JSR-107缓存规范介绍》JSR是JavaSpecificationRequests的缩写,意思是Java规范提案,下面给大家介绍JSR-107缓存规范的相关知识,感兴趣的朋友一起看看吧... 目录1.什么是jsR-1072.应用调用缓存图示3.JSR-107规范使用4.Spring 缓存机制缓存是每一

Spring 缓存在项目中的使用详解

《Spring缓存在项目中的使用详解》Spring缓存机制,Cache接口为缓存的组件规范定义,包扩缓存的各种操作(添加缓存、删除缓存、修改缓存等),本文给大家介绍Spring缓存在项目中的使用... 目录1.Spring 缓存机制介绍2.Spring 缓存用到的概念Ⅰ.两个接口Ⅱ.三个注解(方法层次)Ⅲ.

Spring Boot 整合 Redis 实现数据缓存案例详解

《SpringBoot整合Redis实现数据缓存案例详解》Springboot缓存,默认使用的是ConcurrentMap的方式来实现的,然而我们在项目中并不会这么使用,本文介绍SpringB... 目录1.添加 Maven 依赖2.配置Redis属性3.创建 redisCacheManager4.使用Sp

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red

SpringBoot中HTTP连接池的配置与优化

《SpringBoot中HTTP连接池的配置与优化》这篇文章主要为大家详细介绍了SpringBoot中HTTP连接池的配置与优化的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、HTTP连接池的核心价值二、Spring Boot集成方案方案1:Apache HttpCl

PyTorch高级特性与性能优化方式

《PyTorch高级特性与性能优化方式》:本文主要介绍PyTorch高级特性与性能优化方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、自动化机制1.自动微分机制2.动态计算图二、性能优化1.内存管理2.GPU加速3.多GPU训练三、分布式训练1.分布式数据