Fourier变换中的能量积分及其详细证明过程

2023-10-10 19:29

本文主要是介绍Fourier变换中的能量积分及其详细证明过程,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Fourier变换中的能量积分及其详细证明过程

在使用Fourier变换分析信号时候,有时需要用到能量积分。本文对Fourier变换的能量积分进行分析。

一、Fourier变换中的能量积分

F ( ω ) = F [ f ( t ) ] F(\omega)=\mathscr F[f(t)] F(ω)=F[f(t)],则有

∫ − ∞ + ∞ [ f ( t ) ] 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω (1) \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty }| {F}(\omega )|^2 {\rm{d}}\omega \tag1 +[f(t)]2dt=2π1+F(ω)2dω(1)
该等式又称为Parseval等式。

二、证明Fourier变换中的能量积分(Parseval 等式)

证明:
根据Fourier变换的乘积定理的推论,令 f 1 ( t ) = f 2 ( t ) = f ( t ) f_1(t)=f_2(t)=f(t) f1(t)=f2(t)=f(t),则
∫ − ∞ + ∞ [ f ( t ) ] 2 d t = ∫ − ∞ + ∞ f ( t ) f ( t ) d t = 1 2 π ∫ − ∞ + ∞ F ( ω ) ‾ F ( ω ) d ω = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω = 1 2 π ∫ − ∞ + ∞ S ( ω ) d ω \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t = \int_{ - \infty }^{ + \infty } {{{f}(t)} } {f}(t){\rm{d}}t \\\\= \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {\overline {{F}(\omega )} } {F}(\omega ){\rm{d}}\omega\\\\= \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty }| {F}(\omega )|^2 {\rm{d}}\omega\\\\= \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty } {S}(\omega ) {\rm{d}}\omega +[f(t)]2dt=+f(t)f(t)dt=2π1+F(ω)F(ω)dω=2π1+F(ω)2dω=2π1+S(ω)dω
其中, S ( ω ) = ∣ F ( ω ) ∣ 2 {S}(\omega )=|{F}(\omega )|^2 S(ω)=F(ω)2,并将 S ( ω ) {S}(\omega ) S(ω)称为能量密度函数(或称为能量谱密度)。
证毕.
注解:关于Fourier变换的乘积定理及其推论和证明过程(见本博主文章:链接: Fourier变换的乘积定理及其详细证明过程).

能量密度函数 S ( ω ) {S}(\omega ) S(ω)决定了函数 f ( t ) f(t) f(t)的能量在频域的分布规律,将 S ( ω ) {S}(\omega ) S(ω)对所有频率积分就得到 f ( t ) f(t) f(t)在时间域 ( − ∞ , + ∞ ) (-\infty,+\infty) (,+)范围的总能量 ∫ − ∞ + ∞ [ f ( t ) ] 2 d t \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t +[f(t)]2dt。因此,Parseval等式又称为能量积分。
此外,还可知能量密度函数 S ( ω ) {S}(\omega ) S(ω)是一个偶函数,即
S ( ω ) = S ( − ω ) {S}(\omega )={S}(-\omega ) S(ω)=S(ω).

三、能量积分(Parseval等式)特别注意事项

  1. ∫ − ∞ + ∞ [ f ( t ) ] 2 d t = 1 2 π ∫ − ∞ + ∞ ∣ F ( ω ) ∣ 2 d ω \int_{ - \infty }^{ + \infty } [{f}(t)]^2 {\rm{d}}t = \frac{1}{{2\pi }}\int_{ - \infty }^{ + \infty }| {F}(\omega )|^2 {\rm{d}}\omega +[f(t)]2dt=2π1+F(ω)2dω等式中, ∣ F ( ω ) ∣ 2 |{F}(\omega )|^2 F(ω)2表示对 F ( ω ) F(\omega) F(ω)取模后再平方,而不能写成 [ F ( ω ) ] 2 [{F}(\omega )]^2 [F(ω)]2,此处要特别留意该差别。
  2. 能量密度函数 S ( ω ) {S}(\omega ) S(ω)是一个偶函数,即 S ( ω ) = S ( − ω ) {S}(\omega )={S}(-\omega ) S(ω)=S(ω),它不等于 f ( t ) f(t) f(t)的傅里叶变换(即能量谱密度和频谱是两种不同的计算过程);而是能量密度函数 S ( ω ) {S}(\omega ) S(ω)等于 f ( t ) f(t) f(t)的傅里叶变换后取模再平方而得到。

这篇关于Fourier变换中的能量积分及其详细证明过程的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/182563

相关文章

线上Java OOM问题定位与解决方案超详细解析

《线上JavaOOM问题定位与解决方案超详细解析》OOM是JVM抛出的错误,表示内存分配失败,:本文主要介绍线上JavaOOM问题定位与解决方案的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录一、OOM问题核心认知1.1 OOM定义与技术定位1.2 OOM常见类型及技术特征二、OOM问题定位工具

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

oracle 11g导入\导出(expdp impdp)之导入过程

《oracle11g导入导出(expdpimpdp)之导入过程》导出需使用SEC.DMP格式,无分号;建立expdir目录(E:/exp)并确保存在;导入在cmd下执行,需sys用户权限;若需修... 目录准备文件导入(impdp)1、建立directory2、导入语句 3、更改密码总结上一个环节,我们讲了

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python与MySQL实现数据库实时同步的详细步骤

《Python与MySQL实现数据库实时同步的详细步骤》在日常开发中,数据同步是一项常见的需求,本篇文章将使用Python和MySQL来实现数据库实时同步,我们将围绕数据变更捕获、数据处理和数据写入这... 目录前言摘要概述:数据同步方案1. 基本思路2. mysql Binlog 简介实现步骤与代码示例1

基于C#实现PDF转图片的详细教程

《基于C#实现PDF转图片的详细教程》在数字化办公场景中,PDF文件的可视化处理需求日益增长,本文将围绕Spire.PDFfor.NET这一工具,详解如何通过C#将PDF转换为JPG、PNG等主流图片... 目录引言一、组件部署二、快速入门:PDF 转图片的核心 C# 代码三、分辨率设置 - 清晰度的决定因

Java Kafka消费者实现过程

《JavaKafka消费者实现过程》Kafka消费者通过KafkaConsumer类实现,核心机制包括偏移量管理、消费者组协调、批量拉取消息及多线程处理,手动提交offset确保数据可靠性,自动提交... 目录基础KafkaConsumer类分析关键代码与核心算法2.1 订阅与分区分配2.2 拉取消息2.3

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

Java使用正则提取字符串中的内容的详细步骤

《Java使用正则提取字符串中的内容的详细步骤》:本文主要介绍Java中使用正则表达式提取字符串内容的方法,通过Pattern和Matcher类实现,涵盖编译正则、查找匹配、分组捕获、数字与邮箱提... 目录1. 基础流程2. 关键方法说明3. 常见场景示例场景1:提取所有数字场景2:提取邮箱地址4. 高级