java.nio.channels.SocketChannel[connection-pending remote=/xx.xx.xx.xx:9866]

2023-10-10 12:52

本文主要是介绍java.nio.channels.SocketChannel[connection-pending remote=/xx.xx.xx.xx:9866],希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

背景

问题描述

解决办法


背景

CDH集群在内网中部署,外网客户端需要正常提交任务到内网集群Yarn上,但外网客户端和内网网络不能直接连通,于是通过将内网中的每台主机绑定一个浮动ip,然后开通外网客户端和浮动ip之间的网络来实现上述需求。

问题描述

外网客户端通过连接浮动ip来提交任务到内网集群,任务提交到Yarn之后,集群返回响应内容给客户端,但响应内容中涉及的节点信息均为内网ip,导致客户端无法连接。具体报错如下:

[INFO] 2023-09-20 16:44:50.515  - [taskAppId=TASK-12637-0-7787]:[138] -  -> 2023-09-20 16:44:49,952 INFO  org.apache.hadoop.hdfs.DataStreamer                          [] - Exception in createBlockOutputStreamorg.apache.hadoop.net.ConnectTimeoutException: 60000 millis timeout while waiting for channel to be ready for connect. ch : java.nio.channels.SocketChannel[connection-pending remote=/172.17.0.8:9866]at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:534) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.createSocketForPipeline(DataStreamer.java:259) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.createBlockOutputStream(DataStreamer.java:1692) [flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.nextBlockOutputStream(DataStreamer.java:1648) [flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.run(DataStreamer.java:704) [flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]2023-09-20 16:44:49,964 WARN  org.apache.hadoop.hdfs.DataStreamer                          [] - Abandoning BP-1309512692-172.17.0.6-1691719706686:blk_1073803089_622802023-09-20 16:44:49,980 WARN  org.apache.hadoop.hdfs.DataStreamer                          [] - Excluding datanode DatanodeInfoWithStorage[172.17.0.8:9866,DS-961a5b2e-c2a1-46a3-bfdd-3910d2570bb3,DISK]
[INFO] 2023-09-20 16:45:50.524  - [taskAppId=TASK-12637-0-7787]:[138] -  -> 2023-09-20 16:45:50,043 INFO  org.apache.hadoop.hdfs.DataStreamer                          [] - Exception in createBlockOutputStreamorg.apache.hadoop.net.ConnectTimeoutException: 60000 millis timeout while waiting for channel to be ready for connect. ch : java.nio.channels.SocketChannel[connection-pending remote=/172.17.0.6:9866]at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:534) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.createSocketForPipeline(DataStreamer.java:259) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.createBlockOutputStream(DataStreamer.java:1692) [flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.nextBlockOutputStream(DataStreamer.java:1648) [flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.run(DataStreamer.java:704) [flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]2023-09-20 16:45:50,044 WARN  org.apache.hadoop.hdfs.DataStreamer                          [] - Abandoning BP-1309512692-172.17.0.6-1691719706686:blk_1073803091_622822023-09-20 16:45:50,053 WARN  org.apache.hadoop.hdfs.DataStreamer                          [] - Excluding datanode DatanodeInfoWithStorage[172.17.0.6:9866,DS-3a03d2ae-c218-44f6-80b6-253cb6ada508,DISK]
[INFO] 2023-09-20 16:46:50.415  - [taskAppId=TASK-12637-0-7787]:[127] - shell exit status code:1
[ERROR] 2023-09-20 16:46:50.415  - [taskAppId=TASK-12637-0-7787]:[137] - process has failure , exitStatusCode : 1 , ready to kill ...
[INFO] 2023-09-20 16:46:50.534  - [taskAppId=TASK-12637-0-7787]:[138] -  -> 2023-09-20 16:46:50,083 INFO  org.apache.hadoop.hdfs.DataStreamer                          [] - Exception in createBlockOutputStreamorg.apache.hadoop.net.ConnectTimeoutException: 60000 millis timeout while waiting for channel to be ready for connect. ch : java.nio.channels.SocketChannel[connection-pending remote=/172.17.0.4:9866]at org.apache.hadoop.net.NetUtils.connect(NetUtils.java:534) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.createSocketForPipeline(DataStreamer.java:259) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.createBlockOutputStream(DataStreamer.java:1692) [flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.nextBlockOutputStream(DataStreamer.java:1648) [flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.run(DataStreamer.java:704) [flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]2023-09-20 16:46:50,084 WARN  org.apache.hadoop.hdfs.DataStreamer                          [] - Abandoning BP-1309512692-172.17.0.6-1691719706686:blk_1073803093_622842023-09-20 16:46:50,091 WARN  org.apache.hadoop.hdfs.DataStreamer                          [] - Excluding datanode DatanodeInfoWithStorage[172.17.0.4:9866,DS-5363866a-d143-42f7-85bb-a8236e0bbc41,DISK]2023-09-20 16:46:50,105 WARN  org.apache.hadoop.hdfs.DataStreamer                          [] - DataStreamer Exceptionorg.apache.hadoop.ipc.RemoteException: File /user/hdfs/.flink/application_1691720545069_0007/chunjun/bin/chunjun-docker.sh could only be written to 0 of the 1 minReplication nodes. There are 3 datanode(s) running and 3 node(s) are excluded in this operation.at org.apache.hadoop.hdfs.server.blockmanagement.BlockManager.chooseTarget4NewBlock(BlockManager.java:2102)at org.apache.hadoop.hdfs.server.namenode.FSDirWriteFileOp.chooseTargetForNewBlock(FSDirWriteFileOp.java:294)at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.getAdditionalBlock(FSNamesystem.java:2673)at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.addBlock(NameNodeRpcServer.java:872)at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB.addBlock(ClientNamenodeProtocolServerSideTranslatorPB.java:550)at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2.callBlockingMethod(ClientNamenodeProtocolProtos.java)at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:523)at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:991)at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:869)at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:815)at java.security.AccessController.doPrivileged(Native Method)at javax.security.auth.Subject.doAs(Subject.java:422)at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1875)at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2675)at org.apache.hadoop.ipc.Client.getRpcResponse(Client.java:1489) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.ipc.Client.call(Client.java:1435) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.ipc.Client.call(Client.java:1345) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:227) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.ipc.ProtobufRpcEngine$Invoker.invoke(ProtobufRpcEngine.java:116) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at com.sun.proxy.$Proxy30.addBlock(Unknown Source) ~[?:?]at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolTranslatorPB.addBlock(ClientNamenodeProtocolTranslatorPB.java:444) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) ~[?:1.8.0_211]at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62) ~[?:1.8.0_211]at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) ~[?:1.8.0_211]at java.lang.reflect.Method.invoke(Method.java:498) ~[?:1.8.0_211]at org.apache.hadoop.io.retry.RetryInvocationHandler.invokeMethod(RetryInvocationHandler.java:409) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeMethod(RetryInvocationHandler.java:163) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invoke(RetryInvocationHandler.java:155) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.io.retry.RetryInvocationHandler$Call.invokeOnce(RetryInvocationHandler.java:95) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.io.retry.RetryInvocationHandler.invoke(RetryInvocationHandler.java:346) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at com.sun.proxy.$Proxy31.addBlock(Unknown Source) ~[?:?]at org.apache.hadoop.hdfs.DataStreamer.locateFollowingBlock(DataStreamer.java:1838) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.nextBlockOutputStream(DataStreamer.java:1638) ~[flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]at org.apache.hadoop.hdfs.DataStreamer.run(DataStreamer.java:704) [flink-shaded-hadoop-2-uber-2.8.3-10.0.jar:2.8.3-10.0]2023-09-20 16:46:50,112 ERROR org.apache.flink.yarn.cli.FlinkYarnSessionCli                [] - Error while running the Flink session.

解决办法

  • 思路1

客户端配置主机映射,将内网ip映射为浮动ip,经过尝试,该方案不可行。

  • 思路2

修改HDFS配置

  <property><name>dfs.clientuse.datanode.hostname</name><value>true</value></property>

这篇关于java.nio.channels.SocketChannel[connection-pending remote=/xx.xx.xx.xx:9866]的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/180575

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S