python+OpenCv笔记(十六):边缘检测原理(Sobel算子原理、Laplacian算子原理、Canny边缘检测原理)

本文主要是介绍python+OpenCv笔记(十六):边缘检测原理(Sobel算子原理、Laplacian算子原理、Canny边缘检测原理),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、边缘检测原理

二、Sobel检测算子原理

三、Laplacian算子原理

四、Canny边缘检测

1.噪声去除(高斯滤波)

2.计算图像的梯度与梯度方向

3.非极大值抑制NMS

4.双阈值筛选边界     

五、边缘检测示例及代码编写(跳转)


一、边缘检测原理

目的:

        边缘检测是图像处理和计算机视觉中的基本问题,边缘检测的目的是标识数字图像中亮度变化明显的点。

表现形式:

        图像属性中的显著变化通常反映了属性的重要事件和变化。边缘的表现形式如下图所示:

        图像边缘检测大幅度地减少了数据量,并且剔除了可以认为不相关的信息,保留了图像重要的结构属性。

分类:

        有许多方法用于边缘检测,他们的绝大部分可以划分为两类:基于搜索和基于零穿越。

        基于搜索∶通过寻找图像一阶导数中的最大值来检测边界,然后利用计算结果估计边缘的局部方向,通常采用梯度的方向,并利用此方向找到局部梯度模的最大值,代表算法是Sobel算子和Scharr算子。

(如若求图一中的边缘,这对图一曲线进行求导,得到图二的求导后曲线,图二中导数最大值的地方即为边界。)

         基于零穿越:通过寻找图像二阶导数零穿越来寻找边界,代表算法是Laplacian算子。

二、Sobel检测算子原理

本质:

Sobel算子是图像检测的重要算子之一,其本质是梯度运算。

那什么情况下会产生梯度呢?

例如,对于一张二维图像,

 当我们将卷积核放在图像中时,有三种位置关系,如图:

当卷积核放在纯黑或者纯白的图像上时,是没有梯度产生的,只有放在黑白交界处才会产生梯度,比如白色的灰度值为255,黑色的灰度值为0,那么从白色到黑色的梯度即为0-255=-255,当梯度值的大小超过一个阈值后,我们就认为此处为边缘,sobel算子的算法与其类似。(此处为理解,sobel算子算法相对更加复杂)。

原理:

对于不连续的函数,一阶导数可以写做

{f}'(x)=f(x)-f(x-1)

        或

{f}'(x)=f(x+1)-f(x)

        所以有

{f}'(x)=\frac{f(x+1)-f(x-1)}{2}

假设要处理的图像为 I ,在两个方向求导:

  1. 水平方向:将图像 I 与奇数大小的模板进行卷积,结果为\large _G{}_x,比如,模板大小为3时,有

    \large _G{}_x=\begin{bmatrix} -1 & 0 &+1 \\ -2& 0 &+2 \\ -1& 0 &+1 \end{bmatrix}*I
     
  2.   垂直方向:将图像 I 与奇数大小的模板进行卷积,结果为\large _G{}_y,比如,模板大小为3时,有

    \large _G{}_y=\begin{bmatrix} -1 & -2 &-1 \\ 0& 0 &0 \\ +1& +2 &+1 \end{bmatrix}*I

 那么在图像的每一点处,结合以上两个结果可以求出:

\large G=\sqrt{​{G{_x^{2}}}^{}+{G{_y^{2}}}^{}}

可以简化为:

\large \left | G \right |=\left | G{_x} \right |+\left | G{_y} \right |

统计极大值的位置,就是图像的边缘。

具体步骤:

1.

        例如,原图像为5*6的矩阵

         我们拿固定的3*3的sobel算子卷积核与原图像矩阵进行运算(5*5同理,但必须为奇数)

 2.

        将卷积核在原始图像上进行遍历
        第一次为:

         第二次为:

         最后一次为:

         遍历完毕之后,我们看卷积核的核心,它在原图像矩阵上的覆盖范围为:

        

         可以看出,在原图像中,橙色区域都可以经过与卷积核运算而得到相应的梯度值,而周围的白色区域则不能计算出梯度值,在OpenCv中目前不知道是如何处理的,但在深度学习中是这样处理的:我们将原图像的周围再扩展一圈,并填充值为0,如图:

         这时,我们再与卷积核运算,就可以将原图像的全部区域都计算出梯度值,如图:

 3.

        那么在每一次的遍历之中,sobel算子算法是如何求得梯度值的呢?
        首先,对于水平方向的梯度,根据上面的计算公式有:

         P5点x方向的梯度值为:

P5{_x}=(P3-P1)+2(P6-P4)+(P9-P7)

        在这儿,我们可以理解一下为什么卷积核会有1和2这两个值,1和2代表的是权值,因为对于中心点P5来说,离得越近,对其影响越大,反之越小,所以P4、P6赋予权值为2,其余点赋权值为1。

        那么,我们根据梯度计算式可以看出, P5{_x}是由右边一列减去左边一列(相应列乘以相应的权值)得出的,当左右两列差别特别大的时候,目标点的值会很大,说明该点为边界点。

同理有:

 P5{_y}=(P7-P1)+2(P8-P2)+(P9-P3)

4.

        如果目标像素点求得的值小于0或者大于255怎么办呢?

        因为原图像的灰度值是8位无符号数,即0-255。OpenCv默认的是截断操作,即小于0按0算,大于255按255算,这样显然是不合理的,比如-240是不能简单看做0来算的。

        在python-OpenCv中,我们可以使用16位有符号的数据类型(cv2.CV_16S),处理完图像后,再使用cv2.convertScaleAbs()函数将其转回原来的uint8格式。

        最终的处理结果是,对于小于0的数,取绝对值,对于大于255的数,取255。

 5.

        总梯度:

\bg_white \fn_cm \large G=\sqrt{​{G{_x^{2}}}^{}+{G{_y^{2}}}^{}}

        简化梯度:

\bg_white \fn_cm \large \left | G \right |=\left | G{_x} \right |+\left | G{_y} \right |

参考:
https://www.bilibili.com/video/BV11341127pe?from=search&seid=11602454197720109774&spm_id_from=333.337.0.0https://www.bilibili.com/video/BV11341127pe?from=search&seid=11602454197720109774&spm_id_from=333.337.0.0

三、Laplacian算子原理

原理:

        Laplacian是利用二阶导数来检测边缘,因为图像是二维的,我们需要在两个方向上求导,如下式所示:

\large \Delta src=\frac{ \partial ^{2}src} {\partial x^{2}}+\frac{ \partial ^{2}src} {\partial y^{2}}

在图像中,将该方程表示为离散的形式,

        一维情况:

        \large \bg_white \fn_phv \frac{ \partial ^{2}f} {\partial x^{2}} ={f}''(x)={f}'(x+1)-{f}'(x)

\large = f(x+1)-f(x)-(f(x)-f(x-1))

\large =f(x+1)+f(x-1)-2f(x)

\bg_white \fn_phv \frac{ \partial ^{2}f} {\partial y^{2}} =f(y+1)+f(y-1)-2f(y)

        二维情况:

\small \bigtriangledown ^{2}f(x,y)=[f(x+1,y)+f(x-1,y)+f(x,y+1),+f(x,y-1)]-4f(x,y)

        所以由方程可以得出,laplacian算子使用的卷积核为:

\large kernel=\begin{bmatrix} 0 &1 &0 \\ 1& -4& 1\\ 0& 1 & 0 \end{bmatrix}

具体步骤:

(具体步骤与Sobel算子基本相似,可参考上文的Sobel算子原理步骤)

        这里给出卷积核与图像的运算过程:

        例如,分别有卷积核与原图像矩阵:

        则P5点的梯度值为:

\large P5{_n}_e_w=(P2+P4+P6+P8)-4*P5

四、Canny边缘检测

Canny边缘检测主要由四步组成:

  1. 噪声去除(高斯滤波)
  2. 计算图像的梯度与梯度方向
  3. 非极大值抑制
  4. 双阈值筛选边界
     

1.噪声去除(高斯滤波)

        由于边缘检测容易受到噪声的影响,所以首先使用5*5高斯滤波器去除噪声。
        高斯滤波原理详见文章:
python+OpenCv笔记(十):高斯滤波https://blog.csdn.net/qq_45832961/article/details/122351534

2.计算图像的梯度与梯度方向

        对高斯滤波平滑后的图像使用Sobel算子计算水平和竖直方向的一阶导数(\bg_white \large G{_x}\small \bg_white \large G{_y}),根据得到的\bg_white \large G{_x}\small \bg_white \large G{_y}找到边界的梯度和方向,公式如下:

\bg_white \fn_cm \large G=\sqrt{​{G{_x^{2}}}^{}+{G{_y^{2}}}^{}}

\bg_white \fn_cm \LARGE \theta =arctan(\frac{G{y}}{G{x}})

        Sobel算子原理详见本文的第二篇:Sobel检测算子原理

        如果某个像素点是边缘,则其梯度方向总与边缘垂直,。

        梯度方向被分为四类:垂直、水平和两个对角线方向。

3.非极大值抑制NMS

        在获得梯度的大小和方向之后,对整幅图像进行扫描,去除那些非边界上的点。
        即对每一个像素进行检查,看这个点的梯度在周围具有相同梯度方向的点中是不是最大的
        如图:

         A点位于图像的边缘,在其梯度变化方向,选择像素点B和C,用来检验A点的梯度是否为极大值,若为极大值,则进行保留,否则A点被抑制,最终的结果是具有“细边”的二进制图像。

        (即我们第二步求得的边界可能是ABC,边缘较粗,这时如果A的梯度值均大于B、C,我们进行非极大值抑制后就只剩下了A,从而达到了边缘细化的效果。)

        当然,梯度方向被分为四类:垂直、水平和两个对角线方向,我们将其梯度方向近似为以下值中的一个(0,45,90,135,180,225,270,315),例如30度近似为45度。

         例如,当一个像素点的梯度方向为45度时,我们就在45度与225度(正反方向)两个方向上进行比较,从而决定保留还是抑制。

4.双阈值筛选边界     

        现在要确定真正的边界。我们设置两个阈值: 阈值下界(minVal)和 阈值上界(maxVal)。当图像的灰度梯度高于maxVal时被认为是真的边界(强边界),低于minVal的边界必然不是边界,会被抛弃。如果介于两者之间的话,我们称其为弱边界,和强边界相连的弱边界认为是边界,其他的弱边界则被抑制。如下图:

五、边缘检测示例及代码编写(跳转)

  1. Sobel算子
    python+OpenCv笔记(十三):边缘检测——Sobel检测算子https://blog.csdn.net/qq_45832961/article/details/122396761
  2. Laplacian算子
    python+OpenCv笔记(十四):边缘检测——laplacian算子https://blog.csdn.net/qq_45832961/article/details/122429117
  3. Canny边缘检测
    python+OpenCv笔记(十五):边缘检测——Canny边缘检测https://blog.csdn.net/qq_45832961/article/details/122441575

这篇关于python+OpenCv笔记(十六):边缘检测原理(Sobel算子原理、Laplacian算子原理、Canny边缘检测原理)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/180250

相关文章

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Python安装Pandas库的两种方法

《Python安装Pandas库的两种方法》本文介绍了三种安装PythonPandas库的方法,通过cmd命令行安装并解决版本冲突,手动下载whl文件安装,更换国内镜像源加速下载,最后建议用pipli... 目录方法一:cmd命令行执行pip install pandas方法二:找到pandas下载库,然后

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统