用庞特里亚金极小值原理求解二阶系统的最优控制问题

本文主要是介绍用庞特里亚金极小值原理求解二阶系统的最优控制问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

庞特里亚金极小值原理
1
庞特里亚金极小值原理是在控制向量u(t)受限制的情况下,使得目标函数J取极小,从而求解最优控制问题的原理和方法,又称极大值原理。λ是协态向量,系统模型有多少个变量就有多少个协态。s和u都是省略了符号t的,代表某一时刻的最优状态和最优控制,是一个常数。利用庞特里亚金极小值原理求解最优控制问题首先需要求解协态方程,也就是λ,然后再求解最优控制u*,求解完u*之后,即可得到最优状态。
下面以一个简单的二阶系统为例,简单说明如何用庞特里亚金极小值原理求解二阶系统的最优控制问题。

1. 问题描述

二阶系统的状态s为: s = [ x x ˙ ] s = \left[ \begin{array} { l } { x } \\ { \dot { x } } \end{array} \right] s=[xx˙],控制量u为: u = [ x ¨ ] u = [ \ddot { x } ] u=[x¨],可以将状态s想象成x方向的位移以及x方向上的速度,将控制量u想象成x方向上的加速度,通过输入控制量来改变系统的状态。将问题定义为:试求控制u,将系统在t=2时转移到零态,并使得J取极小值。

系统模型为:
s ˙ = [ 0 1 0 0 ] s + [ 0 1 ] u = [ 0 1 0 0 ] [ x x ˙ ] + [ 0 1 ] x ¨ \begin{aligned} \dot { s } & = \left[ \begin{array} { l l } { 0 } & { 1 } \\ { 0 } & { 0 } \end{array} \right] s + \left[ \begin{array} { l } { 0 } \\ { 1 } \end{array} \right] u = \left[ \begin{array} { l l } { 0 } & { 1 } \\ { 0 } & { 0 } \end{array} \right] \left[ \begin{array} { l } { x } \\ \dot { x } \end{array} \right] + \left[ \begin{array} { l } { 0 } \\ { 1 } \end{array} \right] \ddot { x } \end{aligned} s˙=[0010]s+[01]u=[0010][xx˙]+[01]x¨
目标函数为:
J = 1 2 ∫ 0 2 u 2 d t J = \frac { 1 } { 2 } \int _ { 0 } ^ { 2 } u ^ { 2 } d t J=2102u2dt

2. 求解协态方程

根据庞特里亚金极小值原理中的:
λ ˙ ( t ) = − ∇ s H ( s ∗ ( t ) , u ∗ ( t ) , λ ( t ) ) \dot { \lambda } ( t ) = - \nabla _ { s } H \left( s ^ { * } ( t ) , u ^ { * } ( t ) , \lambda ( t ) \right) λ˙(t)=sH(s(t),u(t),λ(t))
先写出哈密顿函数,然后根据哈密顿函数列出协态方程,并求解。
哈密顿函数为:
H = 1 2 u 2 + λ 1 s 2 + λ 2 u H = \frac { 1 } { 2 } u ^ { 2 } + \lambda _ { 1 } s_ { 2 } + \lambda _ { 2 } u H=21u2+λ1s2+λ2u
两个λ分别乘上对应的系统模型 s ˙ \dot { s } s˙中的两个元素s2和u,其中s2就代表s的第二行的元素(同时也是 s ˙ \dot { s } s˙中第一行的元素),也就是x方向的速度。u即为控制量(同时也是 s ˙ \dot { s } s˙中第二行的元素),这样就得到了哈密顿函数。
将哈密顿函数分别对s1和s2(状态矩阵 s {s} s中的元素)求导,并将s和u这两个常量代入可得协态方程:
λ ˙ 1 ( t ) = − ∂ H ∂ s 1 = 0 ⇒ λ 1 ( t ) = a 1 \dot { \lambda } _ { 1 } ( t ) = - \frac { \partial H } { \partial s _ { 1 } } = 0 \quad \Rightarrow \lambda _ { 1 } ( t ) = a _ { 1 } λ˙1(t)=s1H=0λ1(t)=a1

λ ˙ 2 ( t ) = − ∂ H ∂ s 2 = − λ 1 ( t ) ⇒ λ 2 ( t ) = − a 1 t + a 2 \dot { \lambda } _ { 2 } ( t ) = - \frac { \partial H } { \partial s _ { 2 } } = - \lambda _ { 1 } ( t ) \Rightarrow \lambda _ { 2 } ( t ) = - a _ { 1 } t + a _ { 2 } λ˙2(t)=s2H=λ1(t)λ2(t)=a1t+a2
通过求解上述的微分方程即可求得λ。

3. 求解最优控制

根据庞特里亚金极小值原理中的:
u ∗ ( t ) = arg ⁡ min ⁡ u ( t ) H ( s ∗ ( t ) , u ( t ) , λ ( t ) ) u ^ { * } ( t ) = \arg \min _ { u ( t ) } H \left( s ^ { * } ( t ) , u ( t ) , \lambda ( t ) \right) u(t)=argu(t)minH(s(t),u(t),λ(t))

最优的u*的选取是,当哈密顿函数中的s取最优时,能够使得哈密顿函数最小的那个u即为最优控制量。令导数等于0即可:
∂ H ∂ u = u + λ 2 = 0 ⇒ u = − λ 2 = a 1 t − a 2 \frac { \partial H } { \partial u } = u + \lambda _ { 2 } = 0 \quad \Rightarrow u = - \lambda _ { 2 } = a _ { 1 } t - a _ { 2 } uH=u+λ2=0u=λ2=a1ta2
求得u的表达式之后,对u进行两次积分可以得到s1和s2(状态矩阵 s {s} s中的元素):
s 1 = 1 6 a 1 t 3 − 1 2 a 2 t 2 + a 3 t + a 4 s 2 = 1 2 a 1 t 2 − a 2 t + a 3 \begin{array} { l } {s _ { 1 } = \frac { 1 } { 6 } a _ { 1 } t ^ { 3 } - \frac { 1 } { 2 } a _ { 2 } t ^ { 2 } + a _ { 3 } t + a _ { 4 } } \\ { s _ { 2 } = \frac { 1 } { 2 } a _ { 1 } t ^ { 2 } - a _ { 2 } t + a _ { 3 } } \end{array} s1=61a1t321a2t2+a3t+a4s2=21a1t2a2t+a3

将初始条件和终端条件代入可求得:
u ∗ ( t ) = 9 2 t − 5 u ^ { * } ( t ) = \frac { 9 } { 2 } t - 5 u(t)=29t5

这篇关于用庞特里亚金极小值原理求解二阶系统的最优控制问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179977

相关文章

Spring Boot 实现 IP 限流的原理、实践与利弊解析

《SpringBoot实现IP限流的原理、实践与利弊解析》在SpringBoot中实现IP限流是一种简单而有效的方式来保障系统的稳定性和可用性,本文给大家介绍SpringBoot实现IP限... 目录一、引言二、IP 限流原理2.1 令牌桶算法2.2 漏桶算法三、使用场景3.1 防止恶意攻击3.2 控制资源

Mac系统下卸载JAVA和JDK的步骤

《Mac系统下卸载JAVA和JDK的步骤》JDK是Java语言的软件开发工具包,它提供了开发和运行Java应用程序所需的工具、库和资源,:本文主要介绍Mac系统下卸载JAVA和JDK的相关资料,需... 目录1. 卸载系统自带的 Java 版本检查当前 Java 版本通过命令卸载系统 Java2. 卸载自定

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。

关于跨域无效的问题及解决(java后端方案)

《关于跨域无效的问题及解决(java后端方案)》:本文主要介绍关于跨域无效的问题及解决(java后端方案),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录通用后端跨域方法1、@CrossOrigin 注解2、springboot2.0 实现WebMvcConfig

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Go语言中泄漏缓冲区的问题解决

《Go语言中泄漏缓冲区的问题解决》缓冲区是一种常见的数据结构,常被用于在不同的并发单元之间传递数据,然而,若缓冲区使用不当,就可能引发泄漏缓冲区问题,本文就来介绍一下问题的解决,感兴趣的可以了解一下... 目录引言泄漏缓冲区的基本概念代码示例:泄漏缓冲区的产生项目场景:Web 服务器中的请求缓冲场景描述代码

Java死锁问题解决方案及示例详解

《Java死锁问题解决方案及示例详解》死锁是指两个或多个线程因争夺资源而相互等待,导致所有线程都无法继续执行的一种状态,本文给大家详细介绍了Java死锁问题解决方案详解及实践样例,需要的朋友可以参考下... 目录1、简述死锁的四个必要条件:2、死锁示例代码3、如何检测死锁?3.1 使用 jstack3.2

解决JSONField、JsonProperty不生效的问题

《解决JSONField、JsonProperty不生效的问题》:本文主要介绍解决JSONField、JsonProperty不生效的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录jsONField、JsonProperty不生效javascript问题排查总结JSONField

github打不开的问题分析及解决

《github打不开的问题分析及解决》:本文主要介绍github打不开的问题分析及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、找到github.com域名解析的ip地址二、找到github.global.ssl.fastly.net网址解析的ip地址三