脉动型(Systolic)FIR滤波器的实现

2023-10-10 07:59

本文主要是介绍脉动型(Systolic)FIR滤波器的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

脉动型(Systolic)FIR滤波器设计 #e#

  脉动型FIR滤波器是对直接型的升级,在每个操作后都加入流水线级,每个动作都打一拍,就跟心脏跳动一样,因此称为脉动型,这种结构非常适用于高速数据流的处理。如图1所示为脉动型FIR滤波器结构。

  FIR

  图1

  与直接型结构不同的是,输入数据到下一个处理单元都需要打2拍,这是为了使乘法后的累加数据同步,下面推导验证:

  x(n)为输入数据,yt(n)为直接型结构的输出

  yt(n)=x(n)h(0)+x(n-1)h(1)+x(n-2)h(2)…x(n-10)h(10)

  ys(n)为脉动型结构的输出,如图1中有P1、P2…P10共10个节点

  P1=x(n-4)h(0)

  P2=(P1 + x(n-5)h(1))*Z-1=x(n-5)h(0) + x(n-6)h(1)

  …

  P10=(P9 + x(n-23)h(10))*Z-1

  ys(n)=x(n-14)h(0) + x(n-15)h(1) + … + x(n-23)h(9)+ x(n-24)h(10)

  由ys(n)和yt(n)的表达式,可以推导出ys(n)=yt(n-14)

  因此脉动型FIR滤波器的延迟较大

  如图2所示为11抽头系数脉动型FIR滤波器FPGA实现结构(实例与前几节相同),穿了一层“衣服”,采用Xilinx FPGA中的DSP48E1 实现,基本处理单元中的操作都可在一个DSP48E1中完成,输入数据经过DSP48E1中寄存2拍后通过ACOUT输出,直接连接到下一个 DSP48E1中的ACIN端口,累加输出PCOUT直接连接到下一个DSP48E1中的PCIN端口,这些连接都没有经过FPGA的Fabric连线逻辑,而是通过DSP Block的内部走线连接,这样实现能够缩短路径的延时。

  FIR

  图2

  编写了相关代码,综合结果如下:

  Number of Slice Registers: 4

  Number of Slice LUTs: 19

  Number of DSP48E1s: 11

  Minimum period: 3.006ns{1} (Maximum frequency: 332.668MHz)

  线性相位实现:

  与前几节相同,由于FIR滤波器的线性相位特性,相对应有线性相位的实现结构,如图3所示,利用DSP48E1中预加器实现乘法前的加法操作。对于脉动型 FIR滤波器的线性相位结构有很多注意点,其中预加器数据的配对,常规情况下,此例中应是x(n)和x(n-10)、x(n-1)和x(n-9)、 x(n-2)和x(n-8)、x(n-3)和x(n-7)、x(n-4)和x(n-6),而图3中结构,加入了延时11的移位寄存器,预加器配对的数据为 x(n-2)和n(n-12)、x(n-4)和x(n-12)、x(n-6)和x(n-12)、x(n-8)和x(n-12)、x(n-10)和x(n- 12),可以发现预加器配对数据中有一个数据始终是x(n-12),但是每一个配对数据的相对延时与常规情况下相同:10、8、6、4和2。

  FIR

  图3

  而各节点P1、P2、P3、P4、P5和y(n)的表达式如下

  P1=x(n-5)h(0) + x(n-15)h(0)

  P2=( P1 + (x(n-6)h(1) + x(n-14)h(1)) )Z-1=x(n-6)h(0) + x(n-16)h(0) + x(n-7)h(1) + x(n-15)h(1)

  P3=( P2 + (x(n-8)h(2) + x(n-14)h(2)) )Z-1=x(n-7)h(0) + x(n-17)h(0) + x(n-8)h(1) + x(n-16)h(1) + x(n-9)h(2) + x(n-15)h(2)

  P4=( P3 + (x(n-10)h(3) + x(n-14)h(3)) )Z-1=x(n-8)h(0) + x(n-18)h(0) + x(n-9)h(1) + x(n-17)h(1) + x(n-10)h(2) + x(n-16)h(2) + x(n-11)h(3) + x(n-15)h(3)

  P5=( P4 + (x(n-12)h(4) + x(n-14)h(4)) )Z-1=x(n-9)h(0) + x(n-19)h(0) + x(n-10)h(1) + x(n-18)h(1) + x(n-11)h(2) + x(n-17)h(2) + x(n-12)h(3) + x(n-16)h(3) + x(n-13)h(4) + x(n-15)h(4)

  y(n)=(P5 + x(n-14)h(5))Z-1= x(n-10)h(0) + x(n-20)h(0) + x(n-11)h(1) + x(n-19)h(1) + x(n-12)h(2) + x(n-18)h(2) + x(n-13)h(3) + x(n-17)h(3) + x(n-14)h(4) + x(n-16)h(4) + x(n-15)h(5)

  因抽头系数对称,由h(0)=h(10),h(1)=h(9),h(2)=h(8),h(3)=h(7),h(4)=h(6)可得

  y(n)= x(n-10)h(0) + x(n-11)h(1) + x(n-12)h(2) + x(n-13)h(3) + x(n-14)h(4) + x(n-15)h(5) + x(n-16)h(6) + x(n-17)h(7) + x(n-18)h(8) + x(n-19)h(9) + x(n-20)h(10)

  验证得到y(n)=yt(n-10),比普通脉动结构延时小,但是相比于其他结构的FIR滤波器延时还是较大的。

  编写了相关代码,综合结果如下:

  Number of Slice Registers: 84

  Number of Slice LUTs: 99

  Number of DSP48E1s: 6

  Minimum period: 3.256ns{1} (Maximum frequency: 307.125MHz)

  在DSP in FPGA: FIR滤波器设计(一)、(二)中分别讲解了直接型、转置型和脉动型结构FIR滤波器的实现方法,这三种结构是FPGA实现中比较常用的方法,以下对这三种结构做一个比较:

  (1) 直接型:方法简单易实现,但是使用加法树优化后增加了功耗

  (2) 转置型:关键路径延时较小,时序易满足,但是输入数据扇出较大,不适用于阶数较高的滤波器实现

  (3) 脉动型:适用于高速数据处理,但是延时相比于其它结构较大

 

这篇关于脉动型(Systolic)FIR滤波器的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/179116

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q

Python实现批量提取BLF文件时间戳

《Python实现批量提取BLF文件时间戳》BLF(BinaryLoggingFormat)作为Vector公司推出的CAN总线数据记录格式,被广泛用于存储车辆通信数据,本文将使用Python轻松提取... 目录一、为什么需要批量处理 BLF 文件二、核心代码解析:从文件遍历到数据导出1. 环境准备与依赖库