【Scikit-Learn 中文文档】朴素贝叶斯 - 监督学习 - 用户指南 | ApacheCN

本文主要是介绍【Scikit-Learn 中文文档】朴素贝叶斯 - 监督学习 - 用户指南 | ApacheCN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

中文文档: http://sklearn.apachecn.org/cn/stable/modules/naive_bayes.html

英文文档: http://sklearn.apachecn.org/en/stable/modules/naive_bayes.html

官方文档: http://scikit-learn.org/stable/

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

关于我们: http://www.apachecn.org/organization/209.html




1.9. 朴素贝叶斯

朴素贝叶斯方法是基于贝叶斯定理的一组有监督学习算法,即“简单”地假设每对特征之间相互独立。 给定一个类别 y 和一个从 x_1 到 x_n 的相关的特征向量, 贝叶斯定理阐述了以下关系:

P(y \mid x_1, \dots, x_n) = \frac{P(y) P(x_1, \dots x_n \mid y)}                                 {P(x_1, \dots, x_n)}

使用简单(naive)的假设-每对特征之间都相互独立:

P(x_i | y, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_n) = P(x_i | y) ,

对于所有的 :math: i ,这个关系式可以简化为

P(y \mid x_1, \dots, x_n) = \frac{P(y) \prod_{i=1}^{n} P(x_i \mid y)}                                 {P(x_1, \dots, x_n)}

由于在给定的输入中 P(x_1, \dots, x_n) 是一个常量,我们使用下面的分类规则:

P(y \mid x_1, \dots, x_n) \propto P(y) \prod_{i=1}^{n} P(x_i \mid y)\Downarrow\hat{y} = \arg\max_y P(y) \prod_{i=1}^{n} P(x_i \mid y),

我们可以使用最大后验概率(Maximum A Posteriori, MAP) 来估计 P(y) 和 P(x_i \mid y) ; 前者是训练集中类别 y 的相对频率。

各种各样的的朴素贝叶斯分类器的差异大部分来自于处理 P(x_i \mid y) 分布时的所做的假设不同。

尽管其假设过于简单,在很多实际情况下,朴素贝叶斯工作得很好,特别是文档分类和垃圾邮件过滤。这些工作都要求 一个小的训练集来估计必需参数。(至于为什么朴素贝叶斯表现得好的理论原因和它适用于哪些类型的数据,请参见下面的参考。)

相比于其他更复杂的方法,朴素贝叶斯学习器和分类器非常快。 分类条件分布的解耦意味着可以独立单独地把每个特征视为一维分布来估计。这样反过来有助于缓解维度灾难带来的问题。

另一方面,尽管朴素贝叶斯被认为是一种相当不错的分类器,但却不是好的估计器(estimator),所以不能太过于重视从 predict_proba 输出的概率。

参考文献:

  • H. Zhang (2004). The optimality of Naive Bayes. Proc. FLAIRS.

1.9.1. 高斯朴素贝叶斯

GaussianNB 实现了运用于分类的高斯朴素贝叶斯算法。特征的可能性(即概率)假设为高斯分布:

P(x_i \mid y) &= \frac{1}{\sqrt{2\pi\sigma^2_y}} \exp\left(-\frac{(x_i - \mu_y)^2}{2\sigma^2_y}\right)

参数 \sigma_y 和 \mu_y 使用最大似然法估计。

>>>
>>> from sklearn import datasets
>>> iris = datasets.load_iris()
>>> from sklearn.naive_bayes import GaussianNB
>>> gnb = GaussianNB()
>>> y_pred = gnb.fit(iris.data, iris.target).predict(iris.data)
>>> print("Number of mislabeled points out of a total %d points : %d"
...       % (iris.data.shape[0],(iris.target != y_pred).sum()))
Number of mislabeled points out of a total 150 points : 6

1.9.2. 多项分布朴素贝叶斯

MultinomialNB 实现了服从多项分布数据的朴素贝叶斯算法,也是用于文本分类(这个领域中数据往往以词向量表示,尽管在实践中 tf-idf 向量在预测时表现良好)的两大经典朴素贝叶斯算法之一。 分布参数由每类 y 的 \theta_y = (\theta_{y1},\ldots,\theta_{yn}) 向量决定, 式中 n 是特征的数量(对于文本分类,是词汇量的大小) \theta_{yi} 是样本中属于类 y 中特征 i 概率 P(x_i \mid y) 。

参数 \theta_y 使用平滑过的最大似然估计法来估计,即相对频率计数:

\hat{\theta}_{yi} = \frac{ N_{yi} + \alpha}{N_y + \alpha n}

式中  N_{yi} = \sum_{x \in T} x_i 是 训练集  T 中 特征  i 在类  y 中出现的次数,
N_{y} = \sum_{i=1}^{|T|} N_{yi} 是类  y 中出现所有特征的计数总和。

先验平滑因子 \alpha \ge 0 应用于在学习样本中没有出现的特征,以防在将来的计算中出现0概率输出。 把 \alpha = 1 被称为拉普拉斯平滑(Lapalce smoothing),而 \alpha < 1 被称为利德斯通(Lidstone smoothing)。

1.9.3. 伯努利朴素贝叶斯

BernoulliNB 实现了用于多重伯努利分布数据的朴素贝叶斯训练和分类算法,即有多个特征,但每个特征 都假设是一个二元 (Bernoulli, boolean) 变量。 因此,这类算法要求样本以二元值特征向量表示;如果样本含有其他类型的数据, 一个 BernoulliNB 实例会将其二值化(取决于 binarize 参数)。

伯努利朴素贝叶斯的决策规则基于

P(x_i \mid y) = P(i \mid y) x_i + (1 - P(i \mid y)) (1 - x_i)

与多项分布朴素贝叶斯的规则不同 伯努利朴素贝叶斯明确地惩罚类 y 中没有出现作为预测因子的特征 i ,而多项分布分布朴素贝叶斯只是简单地忽略没出现的特征。

在文本分类的例子中,词频向量(word occurrence vectors)(而非词数向量(word count vectors))可能用于训练和用于这个分类器。 BernoulliNB 可能在一些数据集上可能表现得更好,特别是那些更短的文档。 如果时间允许,建议对两个模型都进行评估。

参考文献:

  • C.D. Manning, P. Raghavan and H. Schütze (2008). Introduction to Information Retrieval. Cambridge University Press, pp. 234-265.
  • A. McCallum and K. Nigam (1998). A comparison of event models for Naive Bayes text classification. Proc. AAAI/ICML-98 Workshop on Learning for Text Categorization, pp. 41-48.
  • V. Metsis, I. Androutsopoulos and G. Paliouras (2006). Spam filtering with Naive Bayes – Which Naive Bayes? 3rd Conf. on Email and Anti-Spam (CEAS).

1.9.4. 堆外朴素贝叶斯模型拟合

朴素贝叶斯模型可以解决整个训练集不能导入内存的大规模分类问题。 为了解决这个问题, MultinomialNBBernoulliNB, 和 GaussianNB 实现了 partial_fit 方法,可以动态的增加数据,使用方法与其他分类器的一样,使用示例见 Out-of-core classification of text documents 。所有的朴素贝叶斯分类器都支持样本权重。

与 fit 方法不同,首次调用 partial_fit 方法需要传递一个所有期望的类标签的列表。

对于 scikit-learn 中可用方案的概览,另见 out-of-core learning 文档。

所有朴素贝叶斯模型调用 partial_fit 都会引入一些计算开销。推荐让数据快越大越好,其大小与 RAM 中可用内存大小相同。




中文文档: http://sklearn.apachecn.org/cn/stable/modules/naive_bayes.html

英文文档: http://sklearn.apachecn.org/en/stable/modules/naive_bayes.html

官方文档: http://scikit-learn.org/stable/

GitHub: https://github.com/apachecn/scikit-learn-doc-zh(觉得不错麻烦给个 Star,我们一直在努力)

贡献者: https://github.com/apachecn/scikit-learn-doc-zh#贡献者

关于我们: http://www.apachecn.org/organization/209.html

有兴趣的们也可以和我们一起来维护,持续更新中 。。。

机器学习交流群: 629470233

这篇关于【Scikit-Learn 中文文档】朴素贝叶斯 - 监督学习 - 用户指南 | ApacheCN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/178739

相关文章

Python ORM神器之SQLAlchemy基本使用完全指南

《PythonORM神器之SQLAlchemy基本使用完全指南》SQLAlchemy是Python主流ORM框架,通过对象化方式简化数据库操作,支持多数据库,提供引擎、会话、模型等核心组件,实现事务... 目录一、什么是SQLAlchemy?二、安装SQLAlchemy三、核心概念1. Engine(引擎)

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

基于Python实现自动化邮件发送系统的完整指南

《基于Python实现自动化邮件发送系统的完整指南》在现代软件开发和自动化流程中,邮件通知是一个常见且实用的功能,无论是用于发送报告、告警信息还是用户提醒,通过Python实现自动化的邮件发送功能都能... 目录一、前言:二、项目概述三、配置文件 `.env` 解析四、代码结构解析1. 导入模块2. 加载环

Python实战之SEO优化自动化工具开发指南

《Python实战之SEO优化自动化工具开发指南》在数字化营销时代,搜索引擎优化(SEO)已成为网站获取流量的重要手段,本文将带您使用Python开发一套完整的SEO自动化工具,需要的可以了解下... 目录前言项目概述技术栈选择核心模块实现1. 关键词研究模块2. 网站技术seo检测模块3. 内容优化分析模

使用Python的requests库来发送HTTP请求的操作指南

《使用Python的requests库来发送HTTP请求的操作指南》使用Python的requests库发送HTTP请求是非常简单和直观的,requests库提供了丰富的API,可以发送各种类型的HT... 目录前言1. 安装 requests 库2. 发送 GET 请求3. 发送 POST 请求4. 发送

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

从基础到进阶详解Python条件判断的实用指南

《从基础到进阶详解Python条件判断的实用指南》本文将通过15个实战案例,带你大家掌握条件判断的核心技巧,并从基础语法到高级应用一网打尽,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录​引言:条件判断为何如此重要一、基础语法:三行代码构建决策系统二、多条件分支:elif的魔法三、

使用Python实现一个简易计算器的新手指南

《使用Python实现一个简易计算器的新手指南》计算器是编程入门的经典项目,它涵盖了变量、输入输出、条件判断等核心编程概念,通过这个小项目,可以快速掌握Python的基础语法,并为后续更复杂的项目打下... 目录准备工作基础概念解析分步实现计算器第一步:获取用户输入第二步:实现基本运算第三步:显示计算结果进