微调codebert、unixcoder、grapghcodebert完成漏洞检测代码

本文主要是介绍微调codebert、unixcoder、grapghcodebert完成漏洞检测代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文件结构如下所示: 

mode.py 

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
import torch.nn as nn
import torch
from torch.autograd import Variable
import copy
from torch.nn import CrossEntropyLoss, MSELossclass Model(nn.Module):   def __init__(self, encoder,config,tokenizer,args):super(Model, self).__init__()self.encoder = encoderself.config=configself.tokenizer=tokenizerself.args=args# Define dropout layer, dropout_probability is taken from args.self.dropout = nn.Dropout(args.dropout_probability)def forward(self, input_ids=None,labels=None): outputs=self.encoder(input_ids,attention_mask=input_ids.ne(1))[0]# Apply dropoutoutputs = self.dropout(outputs)logits=outputsprob=torch.sigmoid(logits)if labels is not None:labels=labels.float()loss=torch.log(prob[:,0]+1e-10)*labels+torch.log((1-prob)[:,0]+1e-10)*(1-labels)loss=-loss.mean()return loss,probelse:return prob

 run.py

# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Fine-tuning the library models for language modeling on a text file (GPT, GPT-2, BERT, RoBERTa).
GPT and GPT-2 are fine-tuned using a causal language modeling (CLM) loss while BERT and RoBERTa are fine-tuned
using a masked language modeling (MLM) loss.
"""from __future__ import absolute_import, division, print_functionimport argparse
import glob
import logging
import os
import pickle
import random
import re
import shutil
import time
import numpy as np
import torch
from torch.utils.data import DataLoader, Dataset, SequentialSampler, RandomSampler,TensorDataset
from torch.utils.data.distributed import DistributedSampler
import json
try:from torch.utils.tensorboard import SummaryWriter
except:from tensorboardX import SummaryWriterfrom tqdm import tqdm, trange
import multiprocessing
from model import Model
from sklearn.metrics import precision_score, recall_score, f1_score,accuracy_score
cpu_cont = multiprocessing.cpu_count()
from transformers import (WEIGHTS_NAME, AdamW, get_linear_schedule_with_warmup,BertConfig, BertForMaskedLM, BertTokenizer, BertForSequenceClassification,GPT2Config, GPT2LMHeadModel, GPT2Tokenizer,OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer,RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer,DistilBertConfig, DistilBertForMaskedLM, DistilBertForSequenceClassification, DistilBertTokenizer)logger = logging.getLogger(__name__)MODEL_CLASSES = {'gpt2': (GPT2Config, GPT2LMHeadModel, GPT2Tokenizer),'openai-gpt': (OpenAIGPTConfig, OpenAIGPTLMHeadModel, OpenAIGPTTokenizer),'bert': (BertConfig, BertForSequenceClassification, BertTokenizer),'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer),'distilbert': (DistilBertConfig, DistilBertForSequenceClassification, DistilBertTokenizer)
}class InputFeatures(object):"""A single training/test features for a example."""def __init__(self,input_tokens,input_ids,idx,label,):self.input_tokens = input_tokensself.input_ids = input_idsself.idx=str(idx)self.label=labeldef convert_examples_to_features(js,tokenizer,args):#sourcecode=' '.join(js['func'].split())code_tokens=tokenizer.tokenize(code)[:args.block_size-2]source_tokens =[tokenizer.cls_token]+code_tokens+[tokenizer.sep_token]source_ids =  tokenizer.convert_tokens_to_ids(source_tokens)padding_length = args.block_size - len(source_ids)source_ids+=[tokenizer.pad_token_id]*padding_lengthreturn InputFeatures(source_tokens,source_ids,js['idx'],js['target'])class TextDataset(Dataset):def __init__(self, tokenizer, args, file_path=None):self.examples = []with open(file_path) as f:for line in f:js=json.loads(line.strip())self.examples.append(convert_examples_to_features(js,tokenizer,args))if 'train' in file_path:for idx, example in enumerate(self.examples[:3]):logger.info("*** Example ***")logger.info("idx: {}".format(idx))logger.info("label: {}".format(example.label))logger.info("input_tokens: {}".format([x.replace('\u0120','_') for x in example.input_tokens]))logger.info("input_ids: {}".format(' '.join(map(str, example.input_ids))))def __len__(self):return len(self.examples)def __getitem__(self, i):       return torch.tensor(self.examples[i].input_ids),torch.tensor(self.examples[i].label)def set_seed(seed=42):random.seed(seed)os.environ['PYHTONHASHSEED'] = str(seed)np.random.seed(seed)torch.manual_seed(seed)torch.cuda.manual_seed(seed)torch.backends.cudnn.deterministic = Truedef train(args, train_dataset, model, tokenizer):""" Train the model """ args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu)train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset)train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size,num_workers=4,pin_memory=True)args.max_steps=args.epoch*len( train_dataloader)args.save_steps=len( train_dataloader)args.warmup_steps=len( train_dataloader)args.logging_steps=len( train_dataloader)args.num_train_epochs=args.epochmodel.to(args.device)# Prepare optimizer and schedule (linear warmup and decay)no_decay = ['bias', 'LayerNorm.weight']optimizer_grouped_parameters = [{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],'weight_decay': args.weight_decay},{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}]num_params = sum(p.numel() for p in model.parameters())trainable_param = sum(p.numel() for p in model.parameters() if p.requires_grad )logger.info(f"Number of model parameters: {num_params}")logger.info(f"Number of model trainable_param: {trainable_param}")optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon)scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=args.max_steps*0.1,num_training_steps=args.max_steps)if args.fp16:try:from apex import ampexcept ImportError:raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.")model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level)# multi-gpu training (should be after apex fp16 initialization)if args.n_gpu > 1:model = torch.nn.DataParallel(model)# Distributed training (should be after apex fp16 initialization)if args.local_rank != -1:model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank],output_device=args.local_rank,find_unused_parameters=True)checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')scheduler_last = os.path.join(checkpoint_last, 'scheduler.pt')optimizer_last = os.path.join(checkpoint_last, 'optimizer.pt')if os.path.exists(scheduler_last):scheduler.load_state_dict(torch.load(scheduler_last))if os.path.exists(optimizer_last):optimizer.load_state_dict(torch.load(optimizer_last))# Train!logger.info("***** Running training *****")logger.info("  Num examples = %d", len(train_dataset))logger.info("  Num Epochs = %d", args.num_train_epochs)logger.info("  Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size)logger.info("  Total train batch size (w. parallel, distributed & accumulation) = %d",args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1))logger.info("  Gradient Accumulation steps = %d", args.gradient_accumulation_steps)logger.info("  Total optimization steps = %d", args.max_steps)global_step = args.start_steptr_loss, logging_loss,avg_loss,tr_nb,tr_num,train_loss = 0.0, 0.0,0.0,0,0,0best_mrr=0.0best_acc=0.0# model.resize_token_embeddings(len(tokenizer))model.zero_grad()# Initialize early stopping parameters at the start of trainingearly_stopping_counter = 0best_loss = Nonefor idx in range(args.start_epoch, int(args.num_train_epochs)):bar = tqdm(train_dataloader,total=len(train_dataloader))tr_num=0train_loss=0for step, batch in enumerate(bar):inputs = batch[0].to(args.device)        labels=batch[1].to(args.device) model.train()loss,logits = model(inputs,labels)preds = logits[:, 0] > 0.5if args.n_gpu > 1:loss = loss.mean()  # mean() to average on multi-gpu parallel trainingif args.gradient_accumulation_steps > 1:loss = loss / args.gradient_accumulation_stepsif args.fp16:with amp.scale_loss(loss, optimizer) as scaled_loss:scaled_loss.backward()torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm)else:loss.backward()torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm)tr_loss += loss.item()tr_num+=1train_loss+=loss.item()if avg_loss==0:avg_loss=tr_lossavg_loss=round(train_loss/tr_num,5)bar.set_description("epoch {} loss {}".format(idx,avg_loss))if (step + 1) % args.gradient_accumulation_steps == 0:optimizer.step()optimizer.zero_grad()scheduler.step()  global_step += 1output_flag=Trueavg_loss=round(np.exp((tr_loss - logging_loss) /(global_step- tr_nb)),4)if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0:logging_loss = tr_losstr_nb=global_stepif args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0:if args.local_rank == -1 and args.evaluate_during_training:  # Only evaluate when single GPU otherwise metrics may not average wellresults = evaluate(args, model, tokenizer,eval_when_training=True)for key, value in results.items():logger.info("  %s = %s", key, round(value,4))                    # Save model checkpointif results['eval_acc']>best_acc:best_acc=results['eval_acc']logger.info("  "+"*"*20)  logger.info("  Best acc:%s",round(best_acc,4))logger.info("  "+"*"*20)                          checkpoint_prefix = 'checkpoint-best-acc'output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))                        if not os.path.exists(output_dir):os.makedirs(output_dir)                        model_to_save = model.module if hasattr(model,'module') else modeloutput_dir = os.path.join(output_dir, '{}'.format('model.bin')) torch.save(model_to_save.state_dict(), output_dir)logger.info("Saving model checkpoint to %s", output_dir)# Calculate average loss for the epochavg_loss = train_loss / tr_num# Check for early stopping conditionif args.early_stopping_patience is not None:if best_loss is None or avg_loss < best_loss - args.min_loss_delta:best_loss = avg_lossearly_stopping_counter = 0else:early_stopping_counter += 1if early_stopping_counter >= args.early_stopping_patience:logger.info("Early stopping")break  # Exit the loop earlydef evaluate(args, model, tokenizer,eval_when_training=False):# Loop to handle MNLI double evaluation (matched, mis-matched)eval_output_dir = args.output_direval_dataset = TextDataset(tokenizer, args,args.eval_data_file)if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]:os.makedirs(eval_output_dir)args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)# Note that DistributedSampler samples randomlyeval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size,num_workers=4,pin_memory=True)# multi-gpu evaluateif args.n_gpu > 1 and eval_when_training is False:model = torch.nn.DataParallel(model)# Eval!logger.info("***** Running evaluation *****")logger.info("  Num examples = %d", len(eval_dataset))logger.info("  Batch size = %d", args.eval_batch_size)eval_loss = 0.0nb_eval_steps = 0model.eval()logits=[]labels=[]for batch in eval_dataloader:inputs = batch[0].to(args.device)label=batch[1].to(args.device)with torch.no_grad():lm_loss,logit = model(inputs,label)eval_loss += lm_loss.mean().item()logits.append(logit.cpu().numpy())labels.append(label.cpu().numpy())nb_eval_steps += 1logits=np.concatenate(logits,0)labels=np.concatenate(labels,0)preds=logits[:,0]>0.5eval_acc=np.mean(labels==preds)precision = precision_score(labels, preds)recall = recall_score(labels, preds)f1 = f1_score(labels, preds)eval_loss = eval_loss / nb_eval_stepsperplexity = torch.tensor(eval_loss)logger.info(f"test_Evaluation Accuracy: {eval_acc}\n")logger.info(f"test_Precision: {precision}")logger.info(f"test_Recall: {recall}")logger.info(f"test_F1 Score: {f1}")result = {"eval_loss": float(perplexity),"eval_acc":round(eval_acc,4),}end_time = time.time()elapsed_time = end_time - start_time# Log timing informationlogger.info(f"{ elapsed_time:.2f}")return resultdef test(args, model, tokenizer):# Loop to handle MNLI double evaluation (matched, mis-matched)eval_dataset = TextDataset(tokenizer, args,args.test_data_file)args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)# Note that DistributedSampler samples randomlyeval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset)eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size)# multi-gpu evaluateif args.n_gpu > 1:model = torch.nn.DataParallel(model)# Eval!logger.info("***** Running Test *****")logger.info("  Num examples = %d", len(eval_dataset))logger.info("  Batch size = %d", args.eval_batch_size)eval_loss = 0.0nb_eval_steps = 0model.eval()logits=[]   labels=[]for batch in tqdm(eval_dataloader,total=len(eval_dataloader)):inputs = batch[0].to(args.device)        label=batch[1].to(args.device) with torch.no_grad():logit = model(inputs)logits.append(logit.cpu().numpy())labels.append(label.cpu().numpy())logits=np.concatenate(logits,0)labels=np.concatenate(labels,0)preds=logits[:,0]>0.5with open(os.path.join(args.output_dir,"predictions.txt"),'w') as f:for example,pred in zip(eval_dataset.examples,preds):if pred:f.write(example.idx+'\t1\n')else:f.write(example.idx+'\t0\n')    def main():parser = argparse.ArgumentParser()## Required parametersparser.add_argument("--train_data_file", default=None, type=str, required=True,help="The input training data file (a text file).")parser.add_argument("--output_dir", default=None, type=str, required=True,help="The output directory where the model predictions and checkpoints will be written.")## Other parametersparser.add_argument("--eval_data_file", default=None, type=str,help="An optional input evaluation data file to evaluate the perplexity on (a text file).")parser.add_argument("--test_data_file", default=None, type=str,help="An optional input evaluation data file to evaluate the perplexity on (a text file).")parser.add_argument("--model_type", default="bert", type=str,help="The model architecture to be fine-tuned.")parser.add_argument("--model_name_or_path", default=None, type=str,help="The model checkpoint for weights initialization.")parser.add_argument("--mlm", action='store_true',help="Train with masked-language modeling loss instead of language modeling.")parser.add_argument("--mlm_probability", type=float, default=0.15,help="Ratio of tokens to mask for masked language modeling loss")parser.add_argument("--config_name", default="", type=str,help="Optional pretrained config name or path if not the same as model_name_or_path")parser.add_argument("--tokenizer_name", default="", type=str,help="Optional pretrained tokenizer name or path if not the same as model_name_or_path")parser.add_argument("--cache_dir", default="", type=str,help="Optional directory to store the pre-trained models downloaded from s3 (instread of the default one)")parser.add_argument("--block_size", default=-1, type=int,help="Optional input sequence length after tokenization.""The training dataset will be truncated in block of this size for training.""Default to the model max input length for single sentence inputs (take into account special tokens).")parser.add_argument("--do_train", action='store_true',help="Whether to run training.")parser.add_argument("--do_eval", action='store_true',help="Whether to run eval on the dev set.")parser.add_argument("--do_test", action='store_true',help="Whether to run eval on the dev set.")    parser.add_argument("--evaluate_during_training", action='store_true',help="Run evaluation during training at each logging step.")parser.add_argument("--do_lower_case", action='store_true',help="Set this flag if you are using an uncased model.")parser.add_argument("--train_batch_size", default=4, type=int,help="Batch size per GPU/CPU for training.")parser.add_argument("--eval_batch_size", default=4, type=int,help="Batch size per GPU/CPU for evaluation.")parser.add_argument('--gradient_accumulation_steps', type=int, default=1,help="Number of updates steps to accumulate before performing a backward/update pass.")parser.add_argument("--learning_rate", default=5e-5, type=float,help="The initial learning rate for Adam.")parser.add_argument("--weight_decay", default=0.0, type=float,help="Weight deay if we apply some.")parser.add_argument("--adam_epsilon", default=1e-8, type=float,help="Epsilon for Adam optimizer.")parser.add_argument("--max_grad_norm", default=1.0, type=float,help="Max gradient norm.")parser.add_argument("--num_train_epochs", default=1.0, type=float,help="Total number of training epochs to perform.")parser.add_argument("--max_steps", default=-1, type=int,help="If > 0: set total number of training steps to perform. Override num_train_epochs.")parser.add_argument("--warmup_steps", default=0, type=int,help="Linear warmup over warmup_steps.")parser.add_argument('--logging_steps', type=int, default=50,help="Log every X updates steps.")parser.add_argument('--save_steps', type=int, default=50,help="Save checkpoint every X updates steps.")parser.add_argument('--save_total_limit', type=int, default=None,help='Limit the total amount of checkpoints, delete the older checkpoints in the output_dir, does not delete by default')parser.add_argument("--eval_all_checkpoints", action='store_true',help="Evaluate all checkpoints starting with the same prefix as model_name_or_path ending and ending with step number")parser.add_argument("--no_cuda", action='store_true',help="Avoid using CUDA when available")parser.add_argument('--overwrite_output_dir', action='store_true',help="Overwrite the content of the output directory")parser.add_argument('--overwrite_cache', action='store_true',help="Overwrite the cached training and evaluation sets")parser.add_argument('--seed', type=int, default=42,help="random seed for initialization")parser.add_argument('--epoch', type=int, default=42,help="random seed for initialization")parser.add_argument('--fp16', action='store_true',help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit")parser.add_argument('--fp16_opt_level', type=str, default='O1',help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3'].""See details at https://nvidia.github.io/apex/amp.html")parser.add_argument("--local_rank", type=int, default=-1,help="For distributed training: local_rank")parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.")parser.add_argument('--server_port', type=str, default='', help="For distant debugging.")# Add early stopping parameters and dropout probability parametersparser.add_argument("--early_stopping_patience", type=int, default=None,help="Number of epochs with no improvement after which training will be stopped.")parser.add_argument("--min_loss_delta", type=float, default=0.001,help="Minimum change in the loss required to qualify as an improvement.")parser.add_argument('--dropout_probability', type=float, default=0, help='dropout probability')args = parser.parse_args()# Setup distant debugging if neededif args.server_ip and args.server_port:# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-scriptimport ptvsdprint("Waiting for debugger attach")ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True)ptvsd.wait_for_attach()# Setup CUDA, GPU & distributed trainingif args.local_rank == -1 or args.no_cuda:device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")args.n_gpu = torch.cuda.device_count()else:  # Initializes the distributed backend which will take care of sychronizing nodes/GPUstorch.cuda.set_device(args.local_rank)device = torch.device("cuda", args.local_rank)torch.distributed.init_process_group(backend='nccl')args.n_gpu = 1args.device = deviceargs.per_gpu_train_batch_size=args.train_batch_size//args.n_gpuargs.per_gpu_eval_batch_size=args.eval_batch_size//args.n_gpu# Setup logginglogging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s -   %(message)s',datefmt='%m/%d/%Y %H:%M:%S',level=logging.INFO if args.local_rank in [-1, 0] else logging.WARN)logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s",args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16)# Set seedset_seed(args.seed)# Load pretrained model and tokenizerif args.local_rank not in [-1, 0]:torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training download model & vocabargs.start_epoch = 0args.start_step = 0checkpoint_last = os.path.join(args.output_dir, 'checkpoint-last')if os.path.exists(checkpoint_last) and os.listdir(checkpoint_last):args.model_name_or_path = os.path.join(checkpoint_last, 'pytorch_model.bin')args.config_name = os.path.join(checkpoint_last, 'config.json')idx_file = os.path.join(checkpoint_last, 'idx_file.txt')with open(idx_file, encoding='utf-8') as idxf:args.start_epoch = int(idxf.readlines()[0].strip()) + 1step_file = os.path.join(checkpoint_last, 'step_file.txt')if os.path.exists(step_file):with open(step_file, encoding='utf-8') as stepf:args.start_step = int(stepf.readlines()[0].strip())logger.info("reload model from {}, resume from {} epoch".format(checkpoint_last, args.start_epoch))config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type]config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path,cache_dir=args.cache_dir if args.cache_dir else None)config.num_labels=1tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name,do_lower_case=args.do_lower_case,cache_dir=args.cache_dir if args.cache_dir else None)if args.block_size <= 0:args.block_size = tokenizer.max_len_single_sentence  # Our input block size will be the max possible for the modelargs.block_size = min(args.block_size, tokenizer.max_len_single_sentence)if args.model_name_or_path:model = model_class.from_pretrained(args.model_name_or_path,from_tf=bool('.ckpt' in args.model_name_or_path),config=config,cache_dir=args.cache_dir if args.cache_dir else None)    else:model = model_class(config)model=Model(model,config,tokenizer,args)if args.local_rank == 0:torch.distributed.barrier()  # End of barrier to make sure only the first process in distributed training download model & vocablogger.info("Training/evaluation parameters %s", args)# Trainingif args.do_train:if args.local_rank not in [-1, 0]:torch.distributed.barrier()  # Barrier to make sure only the first process in distributed training process the dataset, and the others will use the cachetrain_dataset = TextDataset(tokenizer, args,args.train_data_file)if args.local_rank == 0:torch.distributed.barrier()train(args, train_dataset, model, tokenizer)# Evaluationresults = {}if args.do_eval and args.local_rank in [-1, 0]:checkpoint_prefix = 'checkpoint-best-acc/model.bin'output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))  model.load_state_dict(torch.load(output_dir))      model.to(args.device)result=evaluate(args, model, tokenizer)logger.info("***** Eval results *****")for key in sorted(result.keys()):logger.info("  %s = %s", key, str(round(result[key],4)))if args.do_test and args.local_rank in [-1, 0]:checkpoint_prefix = 'checkpoint-best-acc/model.bin'output_dir = os.path.join(args.output_dir, '{}'.format(checkpoint_prefix))  model.load_state_dict(torch.load(output_dir))                  model.to(args.device)test(args, model, tokenizer)return resultsif __name__ == "__main__":start_time = time.time()main()

run.sh

python run.pq \--output_dir=./saved_models \--model_type=roberta \--tokenizer_name=microsoft/unixcoder-base \--model_name_or_path=microsoft/unixcoder-base \--do_train \--train_data_file=/data/code/codebert/dataset/dataset/d2a/d2a_train.json \--eval_data_file=/data/code/codebert/dataset/dataset/d2a/d2a_test.json \--epoch 20  \--block_size 400 \--train_batch_size 4 \--eval_batch_size 8 \--learning_rate 2e-6 \--max_grad_norm 1.0 \--evaluate_during_training \--seed 123213  2>&1 | tee ada.log

这篇关于微调codebert、unixcoder、grapghcodebert完成漏洞检测代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/177930

相关文章

Java进行日期解析与格式化的实现代码

《Java进行日期解析与格式化的实现代码》使用Java搭配ApacheCommonsLang3和Natty库,可以实现灵活高效的日期解析与格式化,本文将通过相关示例为大家讲讲具体的实践操作,需要的可以... 目录一、背景二、依赖介绍1. Apache Commons Lang32. Natty三、核心实现代

使用Python自动化生成PPT并结合LLM生成内容的代码解析

《使用Python自动化生成PPT并结合LLM生成内容的代码解析》PowerPoint是常用的文档工具,但手动设计和排版耗时耗力,本文将展示如何通过Python自动化提取PPT样式并生成新PPT,同时... 目录核心代码解析1. 提取 PPT 样式到 jsON关键步骤:代码片段:2. 应用 JSON 样式到

SpringBoot实现二维码生成的详细步骤与完整代码

《SpringBoot实现二维码生成的详细步骤与完整代码》如今,二维码的应用场景非常广泛,从支付到信息分享,二维码都扮演着重要角色,SpringBoot是一个非常流行的Java基于Spring框架的微... 目录一、环境搭建二、创建 Spring Boot 项目三、引入二维码生成依赖四、编写二维码生成代码五

POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能

《POI从入门到实战轻松完成EasyExcel使用及Excel导入导出功能》ApachePOI是一个流行的Java库,用于处理MicrosoftOffice格式文件,提供丰富API来创建、读取和修改O... 目录前言:Apache POIEasyPoiEasyExcel一、EasyExcel1.1、核心特性

使用Python和PaddleOCR实现图文识别的代码和步骤

《使用Python和PaddleOCR实现图文识别的代码和步骤》在当今数字化时代,图文识别技术的应用越来越广泛,如文档数字化、信息提取等,PaddleOCR是百度开源的一款强大的OCR工具包,它集成了... 目录一、引言二、环境准备2.1 安装 python2.2 安装 PaddlePaddle2.3 安装

SpringBoot中四种AOP实战应用场景及代码实现

《SpringBoot中四种AOP实战应用场景及代码实现》面向切面编程(AOP)是Spring框架的核心功能之一,它通过预编译和运行期动态代理实现程序功能的统一维护,在SpringBoot应用中,AO... 目录引言场景一:日志记录与性能监控业务需求实现方案使用示例扩展:MDC实现请求跟踪场景二:权限控制与

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组