深度学习基础知识 使用torchsummary、netron、tensorboardX查看模参数结构

本文主要是介绍深度学习基础知识 使用torchsummary、netron、tensorboardX查看模参数结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

深度学习基础知识 使用torchsummary、netron、tensorboardX查看模参数结构

  • 1、直接打印网络参数结构
  • 2、采用torchsummary检测、查看模型参数结构
  • 3、采用netron检测、查看模型参数结构
  • 3、使用tensorboardX

1、直接打印网络参数结构

import torch.nn as nn
from torchsummary import summary
import torchclass Alexnet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(), nn.Linear(256 * 5 * 5, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10))def forward(self, X):return self.net(X)if __name__=="__main__":device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model=Alexnet().to(device)print(model)# summary(model,(3,224,224),16)

结果输出:

Alexnet((net): Sequential((0): Conv2d(3, 96, kernel_size=(11, 11), stride=(4, 4), padding=(1, 1))(1): ReLU()(2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)(3): Conv2d(96, 256, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))(4): ReLU()(5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)(6): Conv2d(256, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(7): ReLU()(8): Conv2d(384, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(9): ReLU()(10): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(11): ReLU()(12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)(13): Flatten(start_dim=1, end_dim=-1)(14): Linear(in_features=6400, out_features=4096, bias=True)(15): ReLU()(16): Dropout(p=0.5, inplace=False)(17): Linear(in_features=4096, out_features=4096, bias=True)(18): ReLU()(19): Dropout(p=0.5, inplace=False)(20): Linear(in_features=4096, out_features=10, bias=True))
)

上述方案存在的问题是:当网络参数设置存在错误时,无法检测出来

2、采用torchsummary检测、查看模型参数结构

安装torchsummary

pip install torchsummary

通常采用torchsummary打印网络结构参数时,会出现以下问题
代码:

import torch.nn as nn
from torchsummary import summaryclass Alexnet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(), nn.Linear(256 * 5 * 5, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10))def forward(self, X):return self.net(X)net = Alexnet()
print(summary(net, (3, 224, 224), 8))

报错内容如下:

RuntimeError: Input type (torch.cuda.FloatTensor) and weight type (torch.FloatTensor) should be the same

报错原因分析:

在使用torchsummary可视化模型时候报错,报这个错误是因为类型不匹配,根据报错内容可以看出Input type为torch.FloatTensor(CPU数据类型),而weight type(即网络权重参数这些)为torch.cuda.FloatTensor(GPU数据类型)

解决方案:

将model传到GPU上便可。将代码如下修改便可正常运行

if __name__ == "__main__":from torchsummary import summarydevice = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model = UNet().to(device)	# modifyprint(model)summary(model, input_size=(3, 224, 224))

整体代码:

import torch.nn as nn
from torchsummary import summary
import torchclass Alexnet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(), nn.Linear(256 * 5 * 5, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10))def forward(self, X):return self.net(X)if __name__=="__main__":device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model=Alexnet().to(device)# print(model)summary(model,(3,224,224),16)  # 16:表示传入的数据批次

打印结果:

----------------------------------------------------------------Layer (type)               Output Shape         Param #
================================================================Conv2d-1           [16, 96, 54, 54]          34,944ReLU-2           [16, 96, 54, 54]               0MaxPool2d-3           [16, 96, 26, 26]               0Conv2d-4          [16, 256, 26, 26]         614,656ReLU-5          [16, 256, 26, 26]               0MaxPool2d-6          [16, 256, 12, 12]               0Conv2d-7          [16, 384, 12, 12]         885,120ReLU-8          [16, 384, 12, 12]               0Conv2d-9          [16, 384, 12, 12]       1,327,488ReLU-10          [16, 384, 12, 12]               0Conv2d-11          [16, 256, 12, 12]         884,992ReLU-12          [16, 256, 12, 12]               0MaxPool2d-13            [16, 256, 5, 5]               0Flatten-14                 [16, 6400]               0Linear-15                 [16, 4096]      26,218,496ReLU-16                 [16, 4096]               0Dropout-17                 [16, 4096]               0Linear-18                 [16, 4096]      16,781,312ReLU-19                 [16, 4096]               0Dropout-20                 [16, 4096]               0Linear-21                   [16, 10]          40,970
================================================================
Total params: 46,787,978
Trainable params: 46,787,978
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 9.19
Forward/backward pass size (MB): 163.58
Params size (MB): 178.48
Estimated Total Size (MB): 351.25
----------------------------------------------------------------

3、采用netron检测、查看模型参数结构

安装netron与onnx

pip install netron onnx

代码实现:

import torch.nn as nn
import netron
import torch
from onnx import shape_inference
import onnxclass Alexnet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(), nn.Linear(256 * 5 * 5, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10))def forward(self, X):return self.net(X)if __name__=="__main__":device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")model=Alexnet()temp_image=torch.rand((1,3,224,224))# 1、利用torch.onnx.export,先将模型导出为onnx格式的文件,保存到本地./model.onnxtorch.onnx.export(model=model,args=temp_image,f='model.onnx',input_names=['image'],output_names=['feature_map'])# 2、加载进onxx模型,并推理,然后再保存覆盖原先模型onnx.save(onnx.shape_inference.infer_shapes(onnx.load("model.onnx")),"model.onnx")netron.start('model.onnx')

运行后,显示结构:
在这里插入图片描述
在这里插入图片描述

3、使用tensorboardX

在这里插入图片描述
代码实现:

import torch
import torch.nn as nn
from tensorboardX import SummaryWriter as SummaryWriterclass Alexnet(nn.Module):def __init__(self):super().__init__()self.net = nn.Sequential(nn.Conv2d(3, 96, kernel_size=11, stride=4, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(96, 256, kernel_size=5, padding=2), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Conv2d(256, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 384, kernel_size=3, padding=1), nn.ReLU(),nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(),nn.MaxPool2d(kernel_size=3, stride=2),nn.Flatten(), nn.Linear(256 * 5 * 5, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 4096), nn.ReLU(),nn.Dropout(0.5),nn.Linear(4096, 10))def forward(self, X):return self.net(X)net = Alexnet()
img = torch.rand((1, 3, 224, 224))
with SummaryWriter(log_dir='logs') as w:w.add_graph(net, img)

运行后,会在本地生成一个log日志文件
在命令行运行以下指令:

tensorboard --logdir ./logs --port 6006

这篇关于深度学习基础知识 使用torchsummary、netron、tensorboardX查看模参数结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/177206

相关文章

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Linux中压缩、网络传输与系统监控工具的使用完整指南

《Linux中压缩、网络传输与系统监控工具的使用完整指南》在Linux系统管理中,压缩与传输工具是数据备份和远程协作的桥梁,而系统监控工具则是保障服务器稳定运行的眼睛,下面小编就来和大家详细介绍一下它... 目录引言一、压缩与解压:数据存储与传输的优化核心1. zip/unzip:通用压缩格式的便捷操作2.

Java内存分配与JVM参数详解(推荐)

《Java内存分配与JVM参数详解(推荐)》本文详解JVM内存结构与参数调整,涵盖堆分代、元空间、GC选择及优化策略,帮助开发者提升性能、避免内存泄漏,本文给大家介绍Java内存分配与JVM参数详解,... 目录引言JVM内存结构JVM参数概述堆内存分配年轻代与老年代调整堆内存大小调整年轻代与老年代比例元空

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Go语言数据库编程GORM 的基本使用详解

《Go语言数据库编程GORM的基本使用详解》GORM是Go语言流行的ORM框架,封装database/sql,支持自动迁移、关联、事务等,提供CRUD、条件查询、钩子函数、日志等功能,简化数据库操作... 目录一、安装与初始化1. 安装 GORM 及数据库驱动2. 建立数据库连接二、定义模型结构体三、自动迁