用Python自动生成NBA历史巨星和现役球员生涯曲线

2023-10-09 22:30

本文主要是介绍用Python自动生成NBA历史巨星和现役球员生涯曲线,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文技术栈:

爬虫
Flask
pyecharts

1.序

之前写过一个用 python 自动生成球员职业生涯数据的程序,大家的反响很好,我也感到很欣慰。有问我怎么做的,如何学 python 的,也有提建议说集成到 web 里面的。

其实最开始我也是考虑到集成到 web 里面,但是由于时间关系,只是简单的做了一下,没想到引起了大家的关注和建议。所以这次就做了升级,集成到 web 中!

先看效果吧,比如在本地:

http://127.0.0.1:5800/retire/player?retire=乔丹&game=1

乔丹

http://127.0.0.1:5800/retire/player?retire=科比&game=1

科比

2.环境配置

.语言:Python3.编辑器:Pycharn.web框架:Flask.数据可视化:Pyecharts

项目主目录有个 requirements.txt 文件,里面是项目所需要的依赖包,你只需在终端输入以下命令

pip install -r requirements.txt

依赖包就会自动安装

3.功能升级

现升级完之后加入了以下功能:

3.1 将爬虫集成到web中,通过在浏览器输入球队名称获取球队下所有球员

http://127.0.0.1:5800/nba/team?name=猛龙

猛龙

勇士

3.2 支持现役所有球员生涯数据曲线,同时包括常规赛和季后赛数据

伦纳德常规赛和季后赛数据

http://127.0.0.1:5800/nba/player?game=0&player=kawhileonard-3568.html&color=yellow

伦纳德

当 game=0 的时候,获取常规赛数据,game=1 获取季后赛数据

不得不吐糟一下公众号只支持上传 2M 以下的 gifgif 大了又不支持,gif 小了又不清晰...
所以很多时候录完视频后裁剪成 gif 要花费十几二十分钟的时间,很痛苦...哪位朋友有好方法,还请联系我!

3.3 同时支持退役球星数据,比如篮球界第一老流氓 乔丹

乔丹常规赛

乔丹季后赛

3.4 支持更改背景颜色,同时支持图片下载

比如 魔术师约翰逊 的数据,在请求的时候加入 color 参数

http://127.0.0.1:5800/retire/player?retire=魔术师&game=1&color=yellow

魔术师

根据你传的 color 设置背景色,同时左上角有个下载按钮,点击可下载。是不是很强大!

4.代码讲解

4.1 Flask部分

请求地址:共有三个请求地址,代码所在 urls.py,可以根据个人喜好修改地址

urls

其中根据球队获取球员地址为 /nba/team/, 现役球员生涯数据为 /nba/player/, 退役球星数据为 /retire/player/

请求参数:代码所在 forms.py

参数

具体该传什么参数,代码在上面。其中 color 是可选的!

运行项目:项目主目录下有个 run.py 文件,直接运行即可!

4.2 爬虫部分

之前程序是抓的虎扑上面的数据,虎扑网有个 bug :每个球员都多了一条 2017 年汇总的数据(不清楚是干什么的),现已修正。而且虎扑不支持历史球员数据查询,所以现在加入了一个新网站,代码部分如下:

主要涉及到 html 提取技术,之前文章都有介绍,不详说了。

4.3 数据可视化部分

此部分主要是将 pyecharts 集成到 flask 中,集成的文件在 templates 中有些是默认文件,新增的部分是发送 ajax 请求,生成球员曲线。没有什么太多要说的,因为我之前的文章都有介绍过 pyecharts 的用法

了解更多内容,烦请关注公众号 Python编程与实战

这篇关于用Python自动生成NBA历史巨星和现役球员生涯曲线的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/176010

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所