使用 LSSVM 的 Matlab 演示求解反常微分方程问题(Matlab代码实现)

本文主要是介绍使用 LSSVM 的 Matlab 演示求解反常微分方程问题(Matlab代码实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

LSSVM的特性

  1) 同样是对原始对偶问题进行求解,但是通过求解一个线性方程组(优化目标中的线性约束导致的)来代替SVM中的QP问题(简化求解过程),对于高维输入空间中的分类以及回归任务同样适用;

  2) 实质上是求解线性矩阵方程的过程,与高斯过程(Gaussian processes),正则化网络(regularization networks)和费雪判别分析(Fisher discriminant analysis)的核版本相结合;

  3) 使用了稀疏近似(用来克服使用该算法时的弊端)与稳健回归(稳健统计);

  4) 使用了贝叶斯推断(Bayesian inference);

  5) 可以拓展到非监督学习中:核主成分分析(kernel PCA)或密度聚类;

  6) 可以拓展到递归神经网络中。

📚2 运行结果

主函数部分代码:

% dot(x1)  = a * (x_2 -x_1)

% dot(x_2) = x_1 * (b- x_3) - x_2

% dot(x_3) = x_1 * x_2 -c* x_3

% 0 <=  t  < = t_f

% Initial Condition

% x_1(0) = -9.42, x_2(0)= -9.34, x_3(0)=28.3

% Theta=[a, b, c] = [10, 28, 8/3]

clear all; close all; clc

t0=0;

tf=10;

sampling_time=0.05;

t=(t0:sampling_time:tf)';

initial=[-9.42 -9.34 28.3]; % initial values of the ODE used for generating simulated data

ExactTheta=[10; 28 ; 8/3];  % The exact parameters of the lorenz system used for generating simulated data

cprintf( [1 0.1 0],'**** Excat parameters of the Lorenz system ***** \n\n');

fprintf('True theta_1= %f \n', ExactTheta(1));

fprintf('True theta_2= %f \n', ExactTheta(2));

fprintf('True theta_3= %f \n\n', ExactTheta(3));

fprintf( '************************************* \n\n');

%%  ========= Generating the simulation data ======================

options = odeset('RelTol',1e-5,'AbsTol',[1e-5 1e-5 1e-5]);

sol = ode45(@ridg,[t0 tf],initial,options,ExactTheta);

Y=deval(sol,t);

Y=Y';noise_level=0.01; % 0.03, 0.05, 0.07, 0.1

noise=noise_level*randn(size(t,1),1);

y1=Y(:,1)+noise;

y2=Y(:,2)+noise;

y3=Y(:,3)+noise;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]姜星宇. 基于动态粒子群算法的DPSO-LSSVM模型在短期电力负荷预测中的应用研究[D].沈阳农业大学,2022.DOI:10.27327/d.cnki.gshnu.2022.000596.

🌈4 Matlab代码实现

这篇关于使用 LSSVM 的 Matlab 演示求解反常微分方程问题(Matlab代码实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/175317

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

Python yield与yield from的简单使用方式

《Pythonyield与yieldfrom的简单使用方式》生成器通过yield定义,可在处理I/O时暂停执行并返回部分结果,待其他任务完成后继续,yieldfrom用于将一个生成器的值传递给另一... 目录python yield与yield from的使用代码结构总结Python yield与yield

Go语言使用select监听多个channel的示例详解

《Go语言使用select监听多个channel的示例详解》本文将聚焦Go并发中的一个强力工具,select,这篇文章将通过实际案例学习如何优雅地监听多个Channel,实现多任务处理、超时控制和非阻... 目录一、前言:为什么要使用select二、实战目标三、案例代码:监听两个任务结果和超时四、运行示例五

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布