RL - 强化学习 蒙特卡洛 (Monte-Carlo) 方法计算状态价值

2023-10-09 19:40

本文主要是介绍RL - 强化学习 蒙特卡洛 (Monte-Carlo) 方法计算状态价值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/131102145

MC

在强化学习中,状态价值 (State Value) 是指在特定状态下,智能体能够从该状态开始执行一系列动作,并且按照某个策略进行决策,所能获得的期望累积回报。状态价值函数用于衡量状态的好坏程度,指导智能体在不同状态下,选择最优的行动。

蒙特卡洛方法是一种基于随机采样和统计的强化学习方法,用于估计值函数或优化策略,得名于摩纳哥的蒙特卡洛赌场,因为这种方法使用了大量的随机模拟。在蒙特卡洛方法中,智能体通过与环境的交互来学习,其基本思想是通过多次采样来估计状态或动作的值函数,并根据估计的值函数进行策略改进。蒙特卡洛方法不需要对环境模型进行假设,只需通过与环境的交互来获得样本。

使用蒙特卡洛方法计算状态价值的具体过程,如下:

  1. 使用策略 π \pi π 采样若干条序列。
  2. 对每一条序列中,每一时间步 t t t 的状态 s s s ,更新计数器 N ( s ) ← N ( s ) + 1 N(s) \leftarrow N(s)+1 N(s)N(s)+1,更新总回报 M ( s ) ← M ( s ) + G t M(s) \leftarrow M(s)+G_{t} M(s)M(s)+Gt
  3. 每一个状态的价值被估计为回报的平均值, V ( s ) = M ( s ) N ( s ) V(s)=\frac{M(s)}{N(s)} V(s)=N(s)M(s)

也可以使用增量更新,即
G ← r + γ ∗ G V ( s ) ← V ( s ) + 1 N ( s ) ( G − V ( s ) ) G \leftarrow r + \gamma*G \\ V(s) \leftarrow V(s) +\frac{1}{N(s)}(G-V(s)) Gr+γGV(s)V(s)+N(s)1(GV(s))
序列的单个步骤是(s,a,r,s_next),即从状态s中,(随机)选择a(s,a)的奖励是r,(随机)跳转至s_next

蒙特卡洛方法的采样源码:

# 把输入的两个字符串通过“-”连接,便于使用上述定义的P、R变量
def join(str1, str2):return str1 + '-' + str2def sample(MDP, Pi, timestep_max, number):"""采样函数:param MDP: MDP的元组:param Pi: 策略:param timestep_max: 最长时间步:param number: 采样的序列数:return: 全部采样"""S, A, P, R, gamma = MDPepisodes = []for _ in range(number):episode = []timestep = 0s = S[np.random.randint(4)]  # 随机选择一个除s5以外的状态s作为起点# 当前状态为终止状态或者时间步太长时,一次采样结束while s != "s5" and timestep <= timestep_max:timestep += 1rand, temp = np.random.rand(), 0# 在状态s下根据策略选择动作for a_opt in A:temp += Pi.get(join(s, a_opt), 0)   # 概率逐渐累加至1if temp > rand:  # 最终一定会选择某个动作 a_opta = a_optr = R.get(join(s, a), 0)breakrand, temp = np.random.rand(), 0# 根据状态转移概率得到下一个状态s_nextfor s_opt in S:temp += P.get(join(join(s, a), s_opt), 0)if temp > rand:  # 概率逐渐累加至1s_next = s_opt  # 最终一定会跳转至下个状态s_optbreakepisode.append((s, a, r, s_next))  # 把(s,a,r,s_next)元组放入序列中s = s_next  # s_next变成当前状态,开始接下来的循环episodes.append(episode)return episodes

计算状态价值的源码:

# 对所有采样序列计算所有状态的价值,不断更新V[s]
def MC(episodes, V, N, gamma):for episode in episodes:G = 0for i in range(len(episode) - 1, -1, -1):  #一个序列从后往前计算(s, a, r, s_next) = episode[i]G = r + gamma * GN[s] = N[s] + 1V[s] = V[s] + (G - V[s]) / N[s]

测试输出:

def main():np.random.seed(0)S = ["s1", "s2", "s3", "s4", "s5"]  # 状态集合A = ["保持s1", "前往s1", "前往s2", "前往s3", "前往s4", "前往s5", "概率前往"]  # 动作集合# 状态转移函数P = {"s1-保持s1-s1": 1.0,"s1-前往s2-s2": 1.0,"s2-前往s1-s1": 1.0,"s2-前往s3-s3": 1.0,"s3-前往s4-s4": 1.0,"s3-前往s5-s5": 1.0,"s4-前往s5-s5": 1.0,"s4-概率前往-s2": 0.2,"s4-概率前往-s3": 0.4,"s4-概率前往-s4": 0.4,}# 奖励函数R = {"s1-保持s1": -1,"s1-前往s2": 0,"s2-前往s1": -1,"s2-前往s3": -2,"s3-前往s4": -2,"s3-前往s5": 0,"s4-前往s5": 10,"s4-概率前往": 1,}gamma = 0.5  # 折扣因子MDP = (S, A, P, R, gamma)# 策略1,随机策略Pi_1 = {"s1-保持s1": 0.5,"s1-前往s2": 0.5,"s2-前往s1": 0.5,"s2-前往s3": 0.5,"s3-前往s4": 0.5,"s3-前往s5": 0.5,"s4-前往s5": 0.5,"s4-概率前往": 0.5,}# 采样5次,每个序列最长不超过20步episodes = sample(MDP, Pi_1, 20, 5)print('第一条序列\n', episodes[0])print('第二条序列\n', episodes[1])print('第五条序列\n', episodes[4])timestep_max = 20# 采样1000次,可以自行修改episodes = sample(MDP, Pi_1, timestep_max, 1000)gamma = 0.5V = {"s1": 0, "s2": 0, "s3": 0, "s4": 0, "s5": 0}N = {"s1": 0, "s2": 0, "s3": 0, "s4": 0, "s5": 0}MC(episodes, V, N, gamma)print("使用蒙特卡洛方法计算MDP的状态价值为\n", V)if __name__ == '__main__':main()

输出结果:

# 使用蒙特卡洛方法计算MDP的状态价值{'s1': -1.228923788722258, 's2': -1.6955696284402704, 's3': 0.4823809701532294, 's4': 5.967514743019431, 's5': 0}# 通过MRP计算的状态价值[[-1.22555411] [-1.67666232] [ 0.51890482] [ 6.0756193 ] [ 0.        ]]

状态价值,可以用于计算状态动作价值,具有指导意义。

这篇关于RL - 强化学习 蒙特卡洛 (Monte-Carlo) 方法计算状态价值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/175120

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法

《JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法》:本文主要介绍JavaScript中比较两个数组是否有相同元素(交集)的三种常用方法,每种方法结合实例代码给大家介绍的非常... 目录引言:为什么"相等"判断如此重要?方法1:使用some()+includes()(适合小数组)方法2

JWT + 拦截器实现无状态登录系统

《JWT+拦截器实现无状态登录系统》JWT(JSONWebToken)提供了一种无状态的解决方案:用户登录后,服务器返回一个Token,后续请求携带该Token即可完成身份验证,无需服务器存储会话... 目录✅ 引言 一、JWT 是什么? 二、技术选型 三、项目结构 四、核心代码实现4.1 添加依赖(pom

504 Gateway Timeout网关超时的根源及完美解决方法

《504GatewayTimeout网关超时的根源及完美解决方法》在日常开发和运维过程中,504GatewayTimeout错误是常见的网络问题之一,尤其是在使用反向代理(如Nginx)或... 目录引言为什么会出现 504 错误?1. 探索 504 Gateway Timeout 错误的根源 1.1 后端

MySQL 表空却 ibd 文件过大的问题及解决方法

《MySQL表空却ibd文件过大的问题及解决方法》本文给大家介绍MySQL表空却ibd文件过大的问题及解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录一、问题背景:表空却 “吃满” 磁盘的怪事二、问题复现:一步步编程还原异常场景1. 准备测试源表与数据

python 线程池顺序执行的方法实现

《python线程池顺序执行的方法实现》在Python中,线程池默认是并发执行任务的,但若需要实现任务的顺序执行,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋... 目录方案一:强制单线程(伪顺序执行)方案二:按提交顺序获取结果方案三:任务间依赖控制方案四:队列顺序消