RL - 强化学习 蒙特卡洛 (Monte-Carlo) 方法计算状态价值

2023-10-09 19:40

本文主要是介绍RL - 强化学习 蒙特卡洛 (Monte-Carlo) 方法计算状态价值,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://blog.csdn.net/caroline_wendy/article/details/131102145

MC

在强化学习中,状态价值 (State Value) 是指在特定状态下,智能体能够从该状态开始执行一系列动作,并且按照某个策略进行决策,所能获得的期望累积回报。状态价值函数用于衡量状态的好坏程度,指导智能体在不同状态下,选择最优的行动。

蒙特卡洛方法是一种基于随机采样和统计的强化学习方法,用于估计值函数或优化策略,得名于摩纳哥的蒙特卡洛赌场,因为这种方法使用了大量的随机模拟。在蒙特卡洛方法中,智能体通过与环境的交互来学习,其基本思想是通过多次采样来估计状态或动作的值函数,并根据估计的值函数进行策略改进。蒙特卡洛方法不需要对环境模型进行假设,只需通过与环境的交互来获得样本。

使用蒙特卡洛方法计算状态价值的具体过程,如下:

  1. 使用策略 π \pi π 采样若干条序列。
  2. 对每一条序列中,每一时间步 t t t 的状态 s s s ,更新计数器 N ( s ) ← N ( s ) + 1 N(s) \leftarrow N(s)+1 N(s)N(s)+1,更新总回报 M ( s ) ← M ( s ) + G t M(s) \leftarrow M(s)+G_{t} M(s)M(s)+Gt
  3. 每一个状态的价值被估计为回报的平均值, V ( s ) = M ( s ) N ( s ) V(s)=\frac{M(s)}{N(s)} V(s)=N(s)M(s)

也可以使用增量更新,即
G ← r + γ ∗ G V ( s ) ← V ( s ) + 1 N ( s ) ( G − V ( s ) ) G \leftarrow r + \gamma*G \\ V(s) \leftarrow V(s) +\frac{1}{N(s)}(G-V(s)) Gr+γGV(s)V(s)+N(s)1(GV(s))
序列的单个步骤是(s,a,r,s_next),即从状态s中,(随机)选择a(s,a)的奖励是r,(随机)跳转至s_next

蒙特卡洛方法的采样源码:

# 把输入的两个字符串通过“-”连接,便于使用上述定义的P、R变量
def join(str1, str2):return str1 + '-' + str2def sample(MDP, Pi, timestep_max, number):"""采样函数:param MDP: MDP的元组:param Pi: 策略:param timestep_max: 最长时间步:param number: 采样的序列数:return: 全部采样"""S, A, P, R, gamma = MDPepisodes = []for _ in range(number):episode = []timestep = 0s = S[np.random.randint(4)]  # 随机选择一个除s5以外的状态s作为起点# 当前状态为终止状态或者时间步太长时,一次采样结束while s != "s5" and timestep <= timestep_max:timestep += 1rand, temp = np.random.rand(), 0# 在状态s下根据策略选择动作for a_opt in A:temp += Pi.get(join(s, a_opt), 0)   # 概率逐渐累加至1if temp > rand:  # 最终一定会选择某个动作 a_opta = a_optr = R.get(join(s, a), 0)breakrand, temp = np.random.rand(), 0# 根据状态转移概率得到下一个状态s_nextfor s_opt in S:temp += P.get(join(join(s, a), s_opt), 0)if temp > rand:  # 概率逐渐累加至1s_next = s_opt  # 最终一定会跳转至下个状态s_optbreakepisode.append((s, a, r, s_next))  # 把(s,a,r,s_next)元组放入序列中s = s_next  # s_next变成当前状态,开始接下来的循环episodes.append(episode)return episodes

计算状态价值的源码:

# 对所有采样序列计算所有状态的价值,不断更新V[s]
def MC(episodes, V, N, gamma):for episode in episodes:G = 0for i in range(len(episode) - 1, -1, -1):  #一个序列从后往前计算(s, a, r, s_next) = episode[i]G = r + gamma * GN[s] = N[s] + 1V[s] = V[s] + (G - V[s]) / N[s]

测试输出:

def main():np.random.seed(0)S = ["s1", "s2", "s3", "s4", "s5"]  # 状态集合A = ["保持s1", "前往s1", "前往s2", "前往s3", "前往s4", "前往s5", "概率前往"]  # 动作集合# 状态转移函数P = {"s1-保持s1-s1": 1.0,"s1-前往s2-s2": 1.0,"s2-前往s1-s1": 1.0,"s2-前往s3-s3": 1.0,"s3-前往s4-s4": 1.0,"s3-前往s5-s5": 1.0,"s4-前往s5-s5": 1.0,"s4-概率前往-s2": 0.2,"s4-概率前往-s3": 0.4,"s4-概率前往-s4": 0.4,}# 奖励函数R = {"s1-保持s1": -1,"s1-前往s2": 0,"s2-前往s1": -1,"s2-前往s3": -2,"s3-前往s4": -2,"s3-前往s5": 0,"s4-前往s5": 10,"s4-概率前往": 1,}gamma = 0.5  # 折扣因子MDP = (S, A, P, R, gamma)# 策略1,随机策略Pi_1 = {"s1-保持s1": 0.5,"s1-前往s2": 0.5,"s2-前往s1": 0.5,"s2-前往s3": 0.5,"s3-前往s4": 0.5,"s3-前往s5": 0.5,"s4-前往s5": 0.5,"s4-概率前往": 0.5,}# 采样5次,每个序列最长不超过20步episodes = sample(MDP, Pi_1, 20, 5)print('第一条序列\n', episodes[0])print('第二条序列\n', episodes[1])print('第五条序列\n', episodes[4])timestep_max = 20# 采样1000次,可以自行修改episodes = sample(MDP, Pi_1, timestep_max, 1000)gamma = 0.5V = {"s1": 0, "s2": 0, "s3": 0, "s4": 0, "s5": 0}N = {"s1": 0, "s2": 0, "s3": 0, "s4": 0, "s5": 0}MC(episodes, V, N, gamma)print("使用蒙特卡洛方法计算MDP的状态价值为\n", V)if __name__ == '__main__':main()

输出结果:

# 使用蒙特卡洛方法计算MDP的状态价值{'s1': -1.228923788722258, 's2': -1.6955696284402704, 's3': 0.4823809701532294, 's4': 5.967514743019431, 's5': 0}# 通过MRP计算的状态价值[[-1.22555411] [-1.67666232] [ 0.51890482] [ 6.0756193 ] [ 0.        ]]

状态价值,可以用于计算状态动作价值,具有指导意义。

这篇关于RL - 强化学习 蒙特卡洛 (Monte-Carlo) 方法计算状态价值的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/u012515223/article/details/131102145
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/175120

相关文章

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

Java中实现线程的创建和启动的方法

《Java中实现线程的创建和启动的方法》在Java中,实现线程的创建和启动是两个不同但紧密相关的概念,理解为什么要启动线程(调用start()方法)而非直接调用run()方法,是掌握多线程编程的关键,... 目录1. 线程的生命周期2. start() vs run() 的本质区别3. 为什么必须通过 st

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

SpringBoot读取ZooKeeper(ZK)属性的方法实现

《SpringBoot读取ZooKeeper(ZK)属性的方法实现》本文主要介绍了SpringBoot读取ZooKeeper(ZK)属性的方法实现,强调使用@ConfigurationProperti... 目录1. 在配置文件中定义 ZK 属性application.propertiesapplicati

MyBatis设计SQL返回布尔值(Boolean)的常见方法

《MyBatis设计SQL返回布尔值(Boolean)的常见方法》这篇文章主要为大家详细介绍了MyBatis设计SQL返回布尔值(Boolean)的几种常见方法,文中的示例代码讲解详细,感兴趣的小伙伴... 目录方案一:使用COUNT查询存在性(推荐)方案二:条件表达式直接返回布尔方案三:存在性检查(EXI

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

Java 枚举的基本使用方法及实际使用场景

《Java枚举的基本使用方法及实际使用场景》枚举是Java中一种特殊的类,用于定义一组固定的常量,枚举类型提供了更好的类型安全性和可读性,适用于需要定义一组有限且固定的值的场景,本文给大家介绍Jav... 目录一、什么是枚举?二、枚举的基本使用方法定义枚举三、实际使用场景代替常量状态机四、更多用法1.实现接

java String.join()方法实例详解

《javaString.join()方法实例详解》String.join()是Java提供的一个实用方法,用于将多个字符串按照指定的分隔符连接成一个字符串,这一方法是Java8中引入的,极大地简化了... 目录bVARxMJava String.join() 方法详解1. 方法定义2. 基本用法2.1 拼接

java连接opcua的常见问题及解决方法

《java连接opcua的常见问题及解决方法》本文将使用EclipseMilo作为示例库,演示如何在Java中使用匿名、用户名密码以及证书加密三种方式连接到OPCUA服务器,若需要使用其他SDK,原理... 目录一、前言二、准备工作三、匿名方式连接3.1 匿名方式简介3.2 示例代码四、用户名密码方式连接4