【自动驾驶】PETR/PETRv2/StreamPETR论文分析

2023-10-09 18:44

本文主要是介绍【自动驾驶】PETR/PETRv2/StreamPETR论文分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.PETR

PETR网络结构如下,主要包括image-backbone, 3D Coordinates Generator, 3D Position Encoder, transformer Decoder

1.1  Images Backbone

采用resnet 或者 vovNet,下面的x表示concatenate

 1.2  3D Coordinates Generator

坐标生成跟lss类似,假设一系列深度值,再有相机内存进行坐标转换

1.3 3D Position Encoder 

将多视图2D图像特征输入到1×1卷积层以进行降维。这个由三维坐标生成器生成的三维坐标被转换为通过多层感知的3D位置嵌入。3D位置嵌入与同一视图的2D图像特征相加,生成3D位置感知功能。最后,3D位置感知特征被展平并且用作变换器解码器的输入。

这里2D部分是经过三角函数编码后与3DpositionEmb相加作为K, 原始的iamge feature作为V 输入transformerDecoder

1.4 Transformer Decoder

 DET Query Generator

为了缓解在3D场景中的收敛困难,类似于Anchor DETR,我们首先在均匀分布的3D世界空间中初始化一组可学习的锚点从0到1。然后将3D锚点的坐标输入到小MLP具有两个线性层的网络,并生成初始对象查询Q0。在我们的实践中,在三维空间中使用锚点可以保证收敛在采用DETR中的设置或生成锚点的同时在BEV空间中不能实现令人满意的检测性能。

1.5 测试

训练资源如下:

代码执行图:

可视化效果

 

时延测试:

extract_feat_time

0.0166

positional_encod_time

0.0150

transformer_time

0.0074

fnn_time

0.0031

get_bboxes_time

0.0015

2. PETRV2

petrv2的整体框图如下,与petr不同的地方在于加入了时序模块,分割头,以及改变了 3D Position Encoder

2.1 与petr差异 

PE : 3D Position Encoder部分

 Query Generator

 3. StreamPETR

StreamPETR的总体架构。内存队列存储历史对象查询。在Propagation Transformer中,最近的对象查询依次与历史查询和当前图像特征交互,以获得时间和空间信息。输出查询被进一步用于生成检测结果,并且前K个非背景目标查询被推送到存储器队列中。通过存储器队列的循环更新,长期时间信息被逐帧传播。

 3.1 Propagation Transformer模块

Propagation Transformer和MLN 的细节。在PT中,object查询与混合查询和图像特征进行迭代交互。运动感知层规范化对运动属性进行编码(姿态、时间戳、速度),并隐式地执行补偿。不同色调的矩形象征着来自不同帧,灰色矩形表示当前帧的初始化查询,虚线矩形对应于背景查询。

3.2  Hybrid Attention

Hybrid Attention在这里用于取代原生的self-attention。首先它起到self-attention的作用,对于当前帧的重复框进行抑制。其次,当前帧的object query还需要和历史帧object query做类似cross attention操作,进行时序的交互。 由于hybrid queries远小于cross attention中 image token的数量,因此所带来的额外计算量可以忽略不计。此外历史object query也会传递到当前帧为当前帧提供更好的初始化(propagate query)。

其他部分与petrv2模块相同

这篇关于【自动驾驶】PETR/PETRv2/StreamPETR论文分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/174815

相关文章

基于Python编写一个git自动上传的脚本(打包成exe)

《基于Python编写一个git自动上传的脚本(打包成exe)》这篇文章主要为大家详细介绍了如何基于Python编写一个git自动上传的脚本并打包成exe,文中的示例代码讲解详细,感兴趣的小伙伴可以跟... 目录前言效果如下源码实现利用pyinstaller打包成exe利用ResourceHacker修改e

Springboot请求和响应相关注解及使用场景分析

《Springboot请求和响应相关注解及使用场景分析》本文介绍了SpringBoot中用于处理HTTP请求和构建HTTP响应的常用注解,包括@RequestMapping、@RequestParam... 目录1. 请求处理注解@RequestMapping@GetMapping, @PostMappin

使用Python将PDF表格自动提取并写入Word文档表格

《使用Python将PDF表格自动提取并写入Word文档表格》在实际办公与数据处理场景中,PDF文件里的表格往往无法直接复制到Word中,本文将介绍如何使用Python从PDF文件中提取表格数据,并将... 目录引言1. 加载 PDF 文件并准备 Word 文档2. 提取 PDF 表格并创建 Word 表格

Spring Boot Interceptor的原理、配置、顺序控制及与Filter的关键区别对比分析

《SpringBootInterceptor的原理、配置、顺序控制及与Filter的关键区别对比分析》本文主要介绍了SpringBoot中的拦截器(Interceptor)及其与过滤器(Filt... 目录前言一、核心功能二、拦截器的实现2.1 定义自定义拦截器2.2 注册拦截器三、多拦截器的执行顺序四、过

C++ scoped_ptr 和 unique_ptr对比分析

《C++scoped_ptr和unique_ptr对比分析》本文介绍了C++中的`scoped_ptr`和`unique_ptr`,详细比较了它们的特性、使用场景以及现代C++推荐的使用`uni... 目录1. scoped_ptr基本特性主要特点2. unique_ptr基本用法3. 主要区别对比4. u

Nginx内置变量应用场景分析

《Nginx内置变量应用场景分析》Nginx内置变量速查表,涵盖请求URI、客户端信息、服务器信息、文件路径、响应与性能等类别,这篇文章给大家介绍Nginx内置变量应用场景分析,感兴趣的朋友跟随小编一... 目录1. Nginx 内置变量速查表2. 核心变量详解与应用场景3. 实际应用举例4. 注意事项Ng

Java多种文件复制方式以及效率对比分析

《Java多种文件复制方式以及效率对比分析》本文总结了Java复制文件的多种方式,包括传统的字节流、字符流、NIO系列、第三方包中的FileUtils等,并提供了不同方式的效率比较,同时,还介绍了遍历... 目录1 背景2 概述3 遍历3.1listFiles()3.2list()3.3org.codeha

Apache服务器IP自动跳转域名的问题及解决方案

《Apache服务器IP自动跳转域名的问题及解决方案》本教程将详细介绍如何通过Apache虚拟主机配置实现这一功能,并解决常见问题,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录​​问题背景​​解决方案​​方法 1:修改 httpd-vhosts.conf(推荐)​​步骤

idea-java序列化serialversionUID自动生成方式

《idea-java序列化serialversionUID自动生成方式》Java的Serializable接口用于实现对象的序列化和反序列化,通过将对象转换为字节流来存储或传输,实现Serializa... 目录简介实现序列化serialVersionUID配置使用总结简介Java.io.Seripyth

Nginx分布式部署流程分析

《Nginx分布式部署流程分析》文章介绍Nginx在分布式部署中的反向代理和负载均衡作用,用于分发请求、减轻服务器压力及解决session共享问题,涵盖配置方法、策略及Java项目应用,并提及分布式事... 目录分布式部署NginxJava中的代理代理分为正向代理和反向代理正向代理反向代理Nginx应用场景