【自动驾驶】PETR/PETRv2/StreamPETR论文分析

2023-10-09 18:44

本文主要是介绍【自动驾驶】PETR/PETRv2/StreamPETR论文分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.PETR

PETR网络结构如下,主要包括image-backbone, 3D Coordinates Generator, 3D Position Encoder, transformer Decoder

1.1  Images Backbone

采用resnet 或者 vovNet,下面的x表示concatenate

 1.2  3D Coordinates Generator

坐标生成跟lss类似,假设一系列深度值,再有相机内存进行坐标转换

1.3 3D Position Encoder 

将多视图2D图像特征输入到1×1卷积层以进行降维。这个由三维坐标生成器生成的三维坐标被转换为通过多层感知的3D位置嵌入。3D位置嵌入与同一视图的2D图像特征相加,生成3D位置感知功能。最后,3D位置感知特征被展平并且用作变换器解码器的输入。

这里2D部分是经过三角函数编码后与3DpositionEmb相加作为K, 原始的iamge feature作为V 输入transformerDecoder

1.4 Transformer Decoder

 DET Query Generator

为了缓解在3D场景中的收敛困难,类似于Anchor DETR,我们首先在均匀分布的3D世界空间中初始化一组可学习的锚点从0到1。然后将3D锚点的坐标输入到小MLP具有两个线性层的网络,并生成初始对象查询Q0。在我们的实践中,在三维空间中使用锚点可以保证收敛在采用DETR中的设置或生成锚点的同时在BEV空间中不能实现令人满意的检测性能。

1.5 测试

训练资源如下:

代码执行图:

可视化效果

 

时延测试:

extract_feat_time

0.0166

positional_encod_time

0.0150

transformer_time

0.0074

fnn_time

0.0031

get_bboxes_time

0.0015

2. PETRV2

petrv2的整体框图如下,与petr不同的地方在于加入了时序模块,分割头,以及改变了 3D Position Encoder

2.1 与petr差异 

PE : 3D Position Encoder部分

 Query Generator

 3. StreamPETR

StreamPETR的总体架构。内存队列存储历史对象查询。在Propagation Transformer中,最近的对象查询依次与历史查询和当前图像特征交互,以获得时间和空间信息。输出查询被进一步用于生成检测结果,并且前K个非背景目标查询被推送到存储器队列中。通过存储器队列的循环更新,长期时间信息被逐帧传播。

 3.1 Propagation Transformer模块

Propagation Transformer和MLN 的细节。在PT中,object查询与混合查询和图像特征进行迭代交互。运动感知层规范化对运动属性进行编码(姿态、时间戳、速度),并隐式地执行补偿。不同色调的矩形象征着来自不同帧,灰色矩形表示当前帧的初始化查询,虚线矩形对应于背景查询。

3.2  Hybrid Attention

Hybrid Attention在这里用于取代原生的self-attention。首先它起到self-attention的作用,对于当前帧的重复框进行抑制。其次,当前帧的object query还需要和历史帧object query做类似cross attention操作,进行时序的交互。 由于hybrid queries远小于cross attention中 image token的数量,因此所带来的额外计算量可以忽略不计。此外历史object query也会传递到当前帧为当前帧提供更好的初始化(propagate query)。

其他部分与petrv2模块相同

这篇关于【自动驾驶】PETR/PETRv2/StreamPETR论文分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/174815

相关文章

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Android 缓存日志Logcat导出与分析最佳实践

《Android缓存日志Logcat导出与分析最佳实践》本文全面介绍AndroidLogcat缓存日志的导出与分析方法,涵盖按进程、缓冲区类型及日志级别过滤,自动化工具使用,常见问题解决方案和最佳实... 目录android 缓存日志(Logcat)导出与分析全攻略为什么要导出缓存日志?按需过滤导出1. 按

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

MySQL中读写分离方案对比分析与选型建议

《MySQL中读写分离方案对比分析与选型建议》MySQL读写分离是提升数据库可用性和性能的常见手段,本文将围绕现实生产环境中常见的几种读写分离模式进行系统对比,希望对大家有所帮助... 目录一、问题背景介绍二、多种解决方案对比2.1 原生mysql主从复制2.2 Proxy层中间件:ProxySQL2.3

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

python panda库从基础到高级操作分析

《pythonpanda库从基础到高级操作分析》本文介绍了Pandas库的核心功能,包括处理结构化数据的Series和DataFrame数据结构,数据读取、清洗、分组聚合、合并、时间序列分析及大数据... 目录1. Pandas 概述2. 基本操作:数据读取与查看3. 索引操作:精准定位数据4. Group

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我