【C++】空间配置器 allocator:原理及底层解析

2023-10-09 17:36

本文主要是介绍【C++】空间配置器 allocator:原理及底层解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 空间配置器
    • 一级空间配置器
    • 二级空间配置器
      • 1. 内存池
      • 2. SGI-STL中二级空间配置器设计 - - 哈希桶
      • 3. 二级空间配置器的空间申请
    • 空间配置器的默认选择
    • 空间配置器的在封装:添加了数据类型大小
    • 空间配置器对象的构造与析构
  • 容器中的 allocator

空间配置器

提到空间配置,难免让人联想到 malloc 系列函数。malloc 可以设定用户自己需要的类型为其开辟空间,而空间配置器是专门为 STL 容器进行空间配置的。

空间配置器 allocator:为各个容器进行高效的空间管理 - - 空间的申请与回收。

如果我们用 new 自己设计空间管理,容易因为 频繁向系统申请小块内存而造成内存碎片、影响程序运行效率。而 SGI-STL以128作为小块内存与大块内存的分界线,将空间配置器其分为两级结构,一级空间配置器处理大块内存,二级空间配置器处理小块内存。

一级空间配置器

一级空间配置器原理非常简单,直接对malloc与free进行了封装,并增加了C++中 set_new_handle 思想。

template <int inst>
class __malloc_alloc_template
{
private:static void *oom_malloc(size_t);
public:
// 对malloc的封装static void * allocate(size_t n){// 申请空间成功,直接返回,失败交由oom_malloc处理void *result = malloc(n);if (0 == result) result = oom_malloc(n);return result;}
// 对free的封装static void deallocate(void *p, size_t /* n */){ free(p);}// 模拟set_new_handle// 该函数的参数为函数指针,返回值类型也为函数指针// void (*   set_malloc_handler( void (*f)() ) )()static void (* set_malloc_handler(void (*f)()))(){void (* old)() = __malloc_alloc_oom_handler;__malloc_alloc_oom_handler = f;return(old);}
};// malloc申请空间失败时代用该函数
template <int inst>
void * __malloc_alloc_template<inst>::oom_malloc(size_t n)
{void (* my_malloc_handler)();void *result;for (;;) {// 检测用户是否设置空间不足应对措施,如果没有设置,抛异常,模式new的方式my_malloc_handler = __malloc_alloc_oom_handler;if (0 == my_malloc_handler){__THROW_BAD_ALLOC; }// 如果设置,执行用户提供的空间不足应对措施(*my_malloc_handler)();// 继续申请空间,可能就会申请成功result = malloc(n);if (result)return(result);}
}
typedef __malloc_alloc_template<0> malloc_alloc;

二级空间配置器

二级空间配置器专门负责处理小于 128 字节的小块内存。SGI-STL 采用了 内存池 的技术来提高申请空间的速度以及减少额外空间的浪费,采用 哈希桶 的方式来提高用户获取空间的速度与高效管理。

1. 内存池

内存池就是:先申请一块比较大的内存块已做备用,当需要内存时,直接到内存池中去去,当池中空间不够时,再向内存中去取,当用户不用时,直接还回内存池即可。避免了频繁向系统申请小块内存所造成的效率低、内存碎片以及额外浪费的问题。

2. SGI-STL中二级空间配置器设计 - - 哈希桶

内存池的空间是以哈希桶结构管理的,这里的哈希桶是以 8 字节 的 整数倍 进行设置的, 如果用户所需内存块不是8的整数倍,向上对齐到8的整数倍。原因有两个:

  1. 因为用户申请的空间基本都是4的整数倍,其他大小的空间几乎很少用到。

  2. 每个桶下面悬挂一个个的未被分配的空间,他们的首部 4/8 个字节 储存的都是下一块空间的地址(或者 nullptr),而 64 位空间下的地址就是 8 字节。

在这里插入图片描述

小于 128 的小块内存申请和释放,在哈希桶中以头删和头插的方式实现。

3. 二级空间配置器的空间申请

申请空间:

  • 申请空间大于 128 一级 allocator 进行分配
  • 小于 128 去找相应大小的桶,如果下面有悬挂内存,就把第一个给用户
  • 如果桶下没有内存,去找内存池索要(见下),并将第一个内存块返回给用户

在这里插入图片描述

// 函数功能:向空间配置器索要空间
// 参数n: 用户所需空间字节数
// 返回值:返回空间的首地址
static void * allocate(size_t n)
{obj * __VOLATILE * my_free_list;obj * __RESTRICT result;// 检测用户所需空间释放超过128(即是否为小块内存)if (n > (size_t) __MAX_BYTES){// 不是小块内存交由一级空间配置器处理return (malloc_alloc::allocate(n));}// 根据用户所需字节找到对应的桶号my_free_list = free_list + FREELIST_INDEX(n);result = *my_free_list;// 如果该桶中没有内存块时,向该桶中补充空间if (result == 0){// 将n向上对齐到8的整数被,保证向桶中补充内存块时,内存块一定是8的整数倍void *r = refill(ROUND_UP(n));return r;}// 维护桶中剩余内存块的链式关系*my_free_list = result -> free_list_link;return (result);
};

填充内存块:

  • 用户申请空间桶下没有空闲空间,于是需要向 内存池申请空间(见下)
  • 一次申请 nobjs(20) 个小块内存,按用户需要分配,剩余的挂在桶下
    在这里插入图片描述
// 函数功能:向哈希桶中补充空间
// 参数n:小块内存字节数
// 返回值:首个小块内存的首地址
template <int inst>
void* __default_alloc_template<inst>::refill(size_t n)
{// 一次性向内存池索要20个n字节的小块内存int nobjs = 20;char * chunk = chunk_alloc(n, nobjs);obj ** my_free_list;obj *result;obj *current_obj, *next_obj;int i;// 如果只要了一块,直接返回给用户使用if (1 == nobjs) return(chunk);// 找到对应的桶号my_free_list = free_list + FREELIST_INDEX(n);// 将第一块返回值用户,其他块连接在对应的桶中// 注:此处代码逻辑比较简单,标准库实现更复杂一些result = (obj *)chunk;*my_free_list = next_obj = (obj *)(chunk + n);for (i = 1; ; i++) {current_obj = next_obj;next_obj = (obj *)((char *)next_obj + n);if (nobjs - 1 == i) {current_obj -> free_list_link = 0;break;} else{current_obj -> free_list_link = next_obj;}}return(result);
}

向内存池中索要空间:

  • 桶下无可使用空间,向内存池接着索要 nobjs(20) 个 n 字节小块,需要计算内存池剩余空间是否足够给出
  • 如果剩余空间足够,就给出空间
  • 如果剩余空间不够 20 块,就把能分配整数块空间一块一块的先切割出去
    • 不足一块时,将剩余内存挂接到链表中,通过系统堆向内存池中补充内存
    • 如果补充成功正常使用
    • 如果补充失败,从哈希表中找到比请求空间更大的内存块进行补充
      • 如果补充成功正常使用
      • 如果再次补充失败,向一级空间配置器申请补充
        在这里插入图片描述
template <int inst>
char* __default_alloc_template<inst>::chunk_alloc(size_t size, int&
nobjs)
{// 计算nobjs个size字节内存块的总大小以及内存池中剩余空间总大小char * result;size_t total_bytes = size * nobjs;size_t bytes_left = end_free - start_free;// 如果内存池可以提供total_bytes字节,返回if (bytes_left >= total_bytes) {result = start_free;start_free += total_bytes;return(result);} else if (bytes_left >= size){// nobjs块无法提供,但是至少可以提供1块size字节内存块,提供后返回nobjs = bytes_left/size;total_bytes = size * nobjs;result = start_free;start_free += total_bytes;return(result);} else{// 内存池空间不足,连一块小块村内都不能提供// 向系统堆求助,往内存池中补充空间// 计算向内存中补充空间大小:本次空间总大小两倍 + 向系统申请总大小/16size_t bytes_to_get = 2 * total_bytes + ROUND_UP(heap_size >> 4);// 如果内存池有剩余空间(该空间一定是8的整数倍),将该空间挂到对应哈希桶中if (bytes_left > 0) {// 找对用哈希桶,将剩余空间挂在其上obj ** my_free_list = free_list +FREELIST_INDEX(bytes_left);((obj *)start_free) -> free_list_link = *my_free_list;*my_ree_list = (obj *)start_free;}// 通过系统堆向内存池补充空间,如果补充成功,递归继续分配start_free = (char *)malloc(bytes_to_get);if (0 == start_free) {// 通过系统堆补充空间失败,在哈希桶中找是否有没有使用的较大的内存块int i;obj ** my_free_list, *p;for (i = size; i <= __MAX_BYTES; i += __ALIGN){my_free_list = free_list + FREELIST_INDEX(i);p = *my_free_list;// 如果有,将该内存块补充进内存池,递归继续分配if (0 != p){*my_free_list = p -> free_list_link;start_free = (char *)p;end_free = start_free + i;return(chunk_alloc(size, nobjs));}}// 山穷水尽,只能向一级空间配置器求助// 注意:此处一定要将end_free置空,因为一级空间配置器一旦抛异常就会出问题end_free = 0;start_free = (char *)malloc_alloc::allocate(bytes_to_get);}// 通过系统堆向内存池补充空间成功,更新信息并继续分配heap_size += bytes_to_get;end_free = start_free + bytes_to_get;return(chunk_alloc(size, nobjs));}
}

SGI-STL 二级空间配置器之空间回收:

  • 和申请一样,以 128 为分界线
  • 大于 128 交给 一级空间配置器来释放
  • 小与 128 则找到对应的哈希桶,头插 到其中
    在这里插入图片描述
// 函数功能:用户将空间归还给空间配置器
// 参数:p空间首地址   n空间总大小
static void deallocate(void *p, size_t n)
{obj *q = (obj *)p;obj ** my_free_list;// 如果空间不是小块内存,交给一级空间配置器回收if (n > (size_t) __MAX_BYTES){malloc_alloc::deallocate(p, n);return;}// 找到对应的哈希桶,将内存挂在哈希桶中my_free_list = free_list + FREELIST_INDEX(n);q -> free_list_link = *my_free_list;*my_free_list = q;
}

空间配置器的默认选择

SGI-STL 使用一级还是二级空间配置器,通过 USE_MALLOC 宏进行控制:

#ifdef __USE_MALLOC
typedef malloc_alloc alloc;
typedef malloc_alloc single_client_alloc;
#else// 二级空间配置器定义
#endif

在 SGI_STL 中该宏没有定义,故,默认情况下 SGI_STL 使用二级空间配置器


空间配置器的在封装:添加了数据类型大小

// T: 元素类型
// Alloc: 空间配置器
// 注意:该类只负责申请与归还对象的空间,不否则空间中对象的构造与析构
template<class T, class Alloc>
class simple_alloc
{
public:// 申请n个T类型对象大小的空间static T *allocate(size_t n){ return 0 == n? 0 : (T*) Alloc::allocate(n * sizeof (T)); }// 申请一个T类型对象大小的空间static T *allocate(void){ return (T*) Alloc::allocate(sizeof (T));}// 释放n个T类型对象大小的空间static void deallocate(T *p, size_t n){ if (0 != n) Alloc::deallocate(p, n * sizeof (T));}// 释放一个T类型对象大小的空间static void deallocate(T *p){ Alloc::deallocate(p, sizeof (T)); }
};

空间配置器对象的构造与析构

SGI-STL 对于空间申请释放和对象的构造析构的两个过程,是分离开的。

因为有些对象的构造不需要调用构造函数,销毁时不需要调用析构函数,将该过程分离开可以提高程序的性能。

// 归还空间时,先先调用该函数将对象中资源清理掉
template <class T>
inline void destroy(T* pointer)
{pointer->~T();
}
// 空间申请好后调用该函数:利用placement-new完成对象的构造
template <class T1, class T2>
inline void construct(T1* p, const T2& value) 
{new (p) T1(value);
}
  • 在释放对象时,需要根据对象的类型确定是否调用析构函数(类型萃取)
  • 对象的类型可以通过迭代器萃取到

容器中的 allocator

展示 vector 的部分源码:

template <class T, class Alloc = alloc>
class list
{// ...// 实例化空间配置器typedef simple_alloc<list_node, Alloc> list_node_allocator;// ...protected:link_type get_node(){// 调用空间配置器接口先申请节点的空间return list_node_allocator::allocate(); }// 将节点归还给空间配置器void put_node(link_type p) {list_node_allocator::deallocate(p);}// 创建节点:1. 申请空间 2. 完成节点构造link_type create_node(const T& x){link_type p = get_node();construct(&p->data, x);return p;}// 销毁节点: 1. 调用析构函数清理节点中资源 2. 将节点空间归还给空间配置器void destroy_node(link_type p){destroy(&p->data);put_node(p);}// ...iterator insert(iterator position, const T& x){link_type tmp = create_node(x);tmp->next = position.node;tmp->prev = position.node->prev;(link_type(position.node->prev))->next = tmp;position.node->prev = tmp;return tmp;}iterator erase(iterator position) {link_type next_node = link_type(position.node->next);link_type prev_node = link_type(position.node->prev);prev_node->next = next_node;next_node->prev = prev_node;destroy_node(position.node);return iterator(next_node);}// ...
};

🥰如果本文对你有些帮助,请给个赞或收藏,你的支持是对作者大大莫大的鼓励!!(✿◡‿◡) 欢迎评论留言~~


这篇关于【C++】空间配置器 allocator:原理及底层解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/174468

相关文章

Windows下C++使用SQLitede的操作过程

《Windows下C++使用SQLitede的操作过程》本文介绍了Windows下C++使用SQLite的安装配置、CppSQLite库封装优势、核心功能(如数据库连接、事务管理)、跨平台支持及性能优... 目录Windows下C++使用SQLite1、安装2、代码示例CppSQLite:C++轻松操作SQ

python常见环境管理工具超全解析

《python常见环境管理工具超全解析》在Python开发中,管理多个项目及其依赖项通常是一个挑战,下面:本文主要介绍python常见环境管理工具的相关资料,文中通过代码介绍的非常详细,需要的朋友... 目录1. conda2. pip3. uvuv 工具自动创建和管理环境的特点4. setup.py5.

C++中RAII资源获取即初始化

《C++中RAII资源获取即初始化》RAII通过构造/析构自动管理资源生命周期,确保安全释放,本文就来介绍一下C++中的RAII技术及其应用,具有一定的参考价值,感兴趣的可以了解一下... 目录一、核心原理与机制二、标准库中的RAII实现三、自定义RAII类设计原则四、常见应用场景1. 内存管理2. 文件操

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

全面解析HTML5中Checkbox标签

《全面解析HTML5中Checkbox标签》Checkbox是HTML5中非常重要的表单元素之一,通过合理使用其属性和样式自定义方法,可以为用户提供丰富多样的交互体验,这篇文章给大家介绍HTML5中C... 在html5中,Checkbox(复选框)是一种常用的表单元素,允许用户在一组选项中选择多个项目。本

Redis Cluster模式配置

《RedisCluster模式配置》:本文主要介绍RedisCluster模式配置,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录分片 一、分片的本质与核心价值二、分片实现方案对比 ‌三、分片算法详解1. ‌范围分片(顺序分片)‌2. ‌哈希分片3. ‌虚

SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志

《SpringBoot项目配置logback-spring.xml屏蔽特定路径的日志》在SpringBoot项目中,使用logback-spring.xml配置屏蔽特定路径的日志有两种常用方式,文中的... 目录方案一:基础配置(直接关闭目标路径日志)方案二:结合 Spring Profile 按环境屏蔽关

Python包管理工具核心指令uvx举例详细解析

《Python包管理工具核心指令uvx举例详细解析》:本文主要介绍Python包管理工具核心指令uvx的相关资料,uvx是uv工具链中用于临时运行Python命令行工具的高效执行器,依托Rust实... 目录一、uvx 的定位与核心功能二、uvx 的典型应用场景三、uvx 与传统工具对比四、uvx 的技术实

Python中使用uv创建环境及原理举例详解

《Python中使用uv创建环境及原理举例详解》uv是Astral团队开发的高性能Python工具,整合包管理、虚拟环境、Python版本控制等功能,:本文主要介绍Python中使用uv创建环境及... 目录一、uv工具简介核心特点:二、安装uv1. 通过pip安装2. 通过脚本安装验证安装:配置镜像源(可