autoML 前瞻与实践 ---- H2O Sparkling Water简介

2023-10-09 15:30

本文主要是介绍autoML 前瞻与实践 ---- H2O Sparkling Water简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章大纲

  • 简介
  • Sparkling Water
    • 典型应用场景 Typical Use Case
    • Requirements
    • Installing and Starting
  • PySparkling
    • 安装
    • 典型应用场景
      • Model Building
      • Data Munging
      • Stream Processing
  • 参考文档
    • H2O Sparkling Water
    • PySparkling


简介

Sparkling Water allows users to combine the fast, scalable machine learning algorithms of H2O with the capabilities of Spark. With Sparkling Water, users can drive computation from Scala/R/Python and utilize the H2O Flow UI, providing an ideal machine learning platform for application developers.

Spark is an elegant and powerful general-purpose, open-source, in-memory platform with tremendous momentum. H2O is an in-memory application for machine learning that is reshaping how people apply math and predictive analytics to their business problems.

Integrating these two open-source environments provides a seamless experience for users who want to make a query using Spark SQL, feed the results into H2O to build a model and make predictions, and then use the results again in Spark. For any given problem, better interoperability between tools provides a better experience.

Sparkling Water is licensed under the Apache License, Version 2.0.

Sparking Water擅长利用现有的基于Spark的工作流,这些工作流需要调用高级机器学习算法。一个典型的例子是借助sparkapi进行数据挖掘,其中一个准备好的表被传递给H2O深度学习算法。构建的深度学习模型基于测试数据估计不同的度量,这些度量可用于Spark工作流的其余部分。


Sparkling Water

  • github :https://github.com/h2oai/sparkling-water

典型应用场景 Typical Use Case

Sparkling Water excels in leveraging existing Spark-based workflows that need to call advanced machine learning algorithms. A typical example involves data munging with the help of a Spark API, where a prepared table is passed to the H2O DeepLearning algorithm. The constructed DeepLearning model estimates different metrics based on the testing data, which can be used in the rest of the Spark workflow.

Sparking Water擅长利用现有的基于Spark的工作流,这些工作流需要调用高级机器学习算法。一个典型的例子是借助spark api进行数据挖掘, 使用一个准备好的表被传递给H2O进行深度学习算法自动学习。构建的深度学习模型基于测试数据估计不同的度量,这些度量可用于Spark工作流的其余部分。

Requirements

  • Linux/OS X/Windows

  • Java 1.8+

  • Python 2.7+ For Python version of Sparkling Water (PySparkling)

  • Spark 2.2 and SPARK_HOME shell variable must point to your local Spark installation

Installing and Starting


h2o 基本设计理念

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Sparkling Water supports two types of backends: internal and external.

在这里插入图片描述

在这里插入图片描述


PySparkling

文档:
https://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/pysparkling.html#pysparkling

安装:
https://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/install/install_and_start.html#download-and-run-locally

代码样例:
https://github.com/h2oai/sparkling-water/tree/master/examples#step-by-step-weather-data-example

安装

Which H2O package should I install?

The H2O distribution zip file contains two Python installation artifacts (wheel files): h2o and h2o_client. You can install the full-featured “h2o” package that can be used in a standalone setup (as well as cluster deployment), or you can choose client-only version of the package - “h2o_client”.

  • h2o: Universal deployment package - can be used in standalone mode (eg. H2O started on users laptop) or it can be used to connect to an H2O cluster. This is what most users will choose to install.

  • h2o_client: A variant of the h2o package that doesn’t come with the H2O java code and cannot be used in standalone deployments. This version is suited especially for enterprise deployments where users are connecting to H2O clusters, and starting a standalone H2O instance on an edge node needs to be prevented.

Both packages provide identical APIs and sets of features.

PySparkling is an integration of Python with Sparkling Water. It allows the user to start H2O services on a Spark cluster from Python API.

In the PySparkling driver program, the Spark Context, which uses Py4J to start the driver JVM and the Java Spark Context, is used to create the H2O Context (hc). That, in turn, starts an H2O cloud (cluster) in the Spark ecosystem. Once the H2O cluster is up, the H2O Python package is used to interact with it and run H2O algorithms. All pure H2O calls are executed via H2O’s REST API interface. Users can easily integrate their regular PySpark workflow with H2O algorithms using PySparkling.

PySparkling programs can be launched as an application or in an interactive shell or notebook environment.

安装脚本

conda create -n myspark312 python=3.9
conda activate myspark312
conda install ipykernelpip install pyspark==3.1.2
pip install numpypip install h2o_pysparkling_3.1

我们安装后的主要目标是直接使用h2o 的api 调用pyspark 的 sparksession

先来看看源文件:

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#import h2o
import numbers
import warnings
from ai.h2o.sparkling.H2OConf import H2OConf
from ai.h2o.sparkling.Initializer import Initializer
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum
from pyspark.rdd import RDD
from pyspark.sql import SparkSession
from pyspark.sql.dataframe import DataFrame
from pyspark.sql.types import StringType, BooleanType, IntegerType, LongType, FloatTypeclass H2OContext(object):__isConnected = Falsedef __init__(self):"""This constructor is used just to initialize the environment. It does not start H2OContext.To start H2OContext use one of the getOrCreate methods. This constructor is internally used in those methods"""try:Initializer.load_sparkling_jar()except:raisedef __h2o_connect(h2o_context):schema = h2o_context._jhc.getConf().getScheme()conf = h2o_context._confkwargs = {}kwargs["https"] = schema == "https"kwargs["verify_ssl_certificates"] = conf.verifySslCertificates()kwargs["cacert"] = conf.sslCACert()if conf.userName() and conf.password():kwargs["auth"] = (conf.userName(), conf.password())url = "{}://{}:{}".format(schema, h2o_context._client_ip, h2o_context._client_port)if conf.contextPath() is not None:url = "{}/{}".format(url, conf.contextPath())return h2o.connect(url=url, **kwargs)@staticmethoddef getOrCreate(conf=None):"""Get existing or create new H2OContext based on provided H2O configuration. If the conf parameter is set thenconfiguration from it is used. Otherwise the configuration properties passed to Sparkling Water are used.If the values are not found the default values are used in most of the cases. The default cluster modeis internal, ie. spark.ext.h2o.external.cluster.mode=false:param conf: H2O configuration as instance of H2OConf:return:  instance of H2OContext"""# Workaround for bug in Spark 2.1 as SparkSession created in PySpark is not seen in Java# and call SparkSession.builder.getOrCreate on Java side creates a new session, which is not# desirableactiveSession = SparkSession._instantiatedSessionjvm = activeSession.sparkContext._jvmjvm.org.apache.spark.sql.SparkSession.setDefaultSession(activeSession._jsparkSession)if conf is not None:selected_conf = confelse:selected_conf = H2OConf()selected_conf.set("spark.ext.h2o.client.language", "python")h2o_context = H2OContext()# Create backing H2OContexth2o_context._jvm = jvmpackage = getattr(jvm.ai.h2o.sparkling, "H2OContext$")module = package.__getattr__("MODULE$")jhc = module.getOrCreate(selected_conf._jconf)h2o_context._jhc = jhch2o_context._conf = selected_confh2o_context._client_ip = jhc.h2oLocalClientIp()h2o_context._client_port = jhc.h2oLocalClientPort()# Create H2O REST API clientif not h2o_context.__isClientConnected() or not H2OContext.__isConnected:h2o_context.__h2o_connect()H2OContext.__isConnected = Trueh2o_context.__setClientConnected()print(h2o_context)return h2o_contextdef __isStopped(self):hc = self._jhcfield = hc.getClass().getDeclaredField("stopped")field.setAccessible(True)return field.get(hc)def __isClientConnected(self):field = self.__getClientConnectedField()return field.get(self._jhc)def __setClientConnected(self):field = self.__getClientConnectedField()field.set(self._jhc, True)def __getClientConnectedField(self):field = self._jhc.getClass().getDeclaredField("clientConnected")field.setAccessible(True)return fielddef stop(self, stopSparkContext=False):h2o.connection().close()scalaStopMethod = getattr(self._jhc, "ai$h2o$sparkling$H2OContext$$stop")scalaStopMethod(stopSparkContext, False, False)  # stopSpark = False, stopJVM = False, inShutdownHook = Falsedef downloadH2OLogs(self, destination, container="ZIP"):assert_is_type(container, Enum("ZIP", "LOG"))return self._jhc.downloadH2OLogs(destination, container)def __str__(self):if self.__isClientConnected() and not self.__isStopped():return self._jhc.toString()else:return "H2OContext has been stopped or hasn't been created. Call H2OContext.getOrCreate() or " \"H2OContext.getOrCreate(conf) to create a new one."def __repr__(self):self.show()return ""def show(self):print(self)def getConf(self):return self._confdef setH2OLogLevel(self, level):self._jhc.setH2OLogLevel(level)def getH2OLogLevel(self):return self._jhc.getH2OLogLevel()def importHiveTable(self, database="default", table=None, partitions=None, allowMultiFormat=False):return h2o.import_hive_table(database, table, partitions, allowMultiFormat)def asSparkFrame(self, h2oFrame, copyMetadata=True):"""Transforms given H2OFrame to Spark DataFrameParameters----------h2oFrame : H2OFramecopyMetadata: Bool = TrueReturns-------Spark DataFrame"""if isinstance(h2oFrame, H2OFrame):frame_id = h2oFrame.frame_idjdf = self._jhc.asSparkFrame(frame_id, copyMetadata)sqlContext = SparkSession.builder.getOrCreate()._wrappeddf = DataFrame(jdf, sqlContext)# Attach h2o_frame to dataframe which forces python not to delete the frame when we leave the scope of this# method.# Without this, after leaving this method python would garbage collect the frame since it's not used# anywhere and spark. when executing any action on this dataframe, will fail since the frame# would be missing.df._h2o_frame = h2oFramereturn dfdef asH2OFrame(self, sparkFrame, h2oFrameName=None, fullCols=-1):"""Transforms given Spark RDD or DataFrame to H2OFrame.Parameters----------sparkFrame : Spark RDD or DataFrameh2oFrameName : Optional name for resulting H2OFramefullCols : number of first n columns which are sent to the client together with the dataReturns-------H2OFrame which contains data of original input Spark data structure"""assert_is_type(sparkFrame, DataFrame, RDD)df = H2OContext.__prepareSparkDataForConversion(self._jvm, sparkFrame)if h2oFrameName is None:key = self._jhc.asH2OFrame(df._jdf).frameId()else:key = self._jhc.asH2OFrame(df._jdf, h2oFrameName).frameId()return H2OFrame.get_frame(key, full_cols=fullCols, light=True)@staticmethoddef __prepareSparkDataForConversion(_jvm, sparkData):if isinstance(sparkData, DataFrame):return sparkDataelif sparkData.isEmpty():return sparkData.toDF()else:session = SparkSession.builder.getOrCreate()first = sparkData.first()if isinstance(first, (str, bool, numbers.Integral, float)):if isinstance(first, str):return session.createDataFrame(sparkData, StringType())elif isinstance(first, bool):return session.createDataFrame(sparkData, BooleanType())elif (isinstance(sparkData.min(), numbers.Integral) and isinstance(sparkData.max(), numbers.Integral)):if sparkData.min() >= _jvm.Integer.MIN_VALUE and sparkData.max() <= _jvm.Integer.MAX_VALUE:return session.createDataFrame(sparkData, IntegerType())elif sparkData.min() >= _jvm.Long.MIN_VALUE and sparkData.max() <= _jvm.Long.MAX_VALUE:return session.createDataFrame(sparkData, LongType())else:warnings.warn("Maximal or minimal number in RDD is too big to convert to Java. Treating numbers as strings.")return session.createDataFrame(sparkData, StringType())elif isinstance(first, float):## Spark would fail when creating data frame if there is int type in RDD[Float]## Convert explicitly all to floatreturn session.createDataFrame(sparkData.map(lambda x: float(x)), FloatType())else:raise ValueError('Unreachable code')else:return session.createDataFrame(sparkData)

上面的安装,我使用,windows 子系统,还以为 文件可以在系统上找到,结果发现,wsl 现在直接使用了一个虚拟磁盘文件:
wsl 路径:C:\Users\wangyny\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu20.04onWindows_79rhkp1fndgsc\LocalState
在这里插入图片描述

典型应用场景

Model Building

A typical example involves multiple data transformations with the help of Spark
API, where a final form of data is transformed into an H2O frame and passed
to an H2O algorithm. The constructed model estimates different metrics based

on the testing data or gives a prediction that can be used in the rest of the
data pipeline (see Figure 1).
在这里插入图片描述

Data Munging

Another use-case includes Sparkling Water as a provider of ad-hoc data transformations. Figure 2 shows a data pipeline benefiting from H2O’s parallel
data load and parse capabilities, while Spark API is used as another provider
of data transformations. Furthermore, H2O can be used as an in-place data
transformer.

Stream Processing

The last use-case depicted in Figure 3 introduces two data pipelines. The first
one, called an off-line training pipeline, is invoked regularly (e.g., every hour or
every day), and utilizes both Spark and H2O API. The off-line pipeline provides
an H2O model as output. The H2O API allows the model to be exported in a
form independent on H2O run-time. The second pipeline processes streaming
data (with help of Spark Streaming or Storm) and utilizes the model trained in
the first pipeline to score the incoming data. Since the model is exported with

在这里插入图片描述
no run-time dependency on H2O, the streaming pipeline can be lightweight and
independent on H2O or Sparkling Water infrastructure.
 Sparkling Water used as an off-line model producer feeding models into a stream-based data pipeline
Sparkling Water used as an off-line model producer feeding models
into a stream-based data pipeline.



参考文档

H2O Sparkling Water

H2O Sparkling Water documentation

  • https://databricks.com/blog/2014/06/30/sparkling-water-h20-spark.html

PySparkling


PySparkling

  • https://github.com/MachineLP/CodeFun/blob/master/05-auto_ml_dl/01-auto_ml/01-%E8%87%AA%E5%8A%A8%E5%8C%96%E7%89%B9%E5%BE%81%E5%B7%A5%E7%A8%8B.md

  • https://bbs.huaweicloud.com/blogs/134113

  • 可视化与拖拽式建模

这篇关于autoML 前瞻与实践 ---- H2O Sparkling Water简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/173828

相关文章

JDK21对虚拟线程的几种用法实践指南

《JDK21对虚拟线程的几种用法实践指南》虚拟线程是Java中的一种轻量级线程,由JVM管理,特别适合于I/O密集型任务,:本文主要介绍JDK21对虚拟线程的几种用法,文中通过代码介绍的非常详细,... 目录一、参考官方文档二、什么是虚拟线程三、几种用法1、Thread.ofVirtual().start(

从基础到高级详解Go语言中错误处理的实践指南

《从基础到高级详解Go语言中错误处理的实践指南》Go语言采用了一种独特而明确的错误处理哲学,与其他主流编程语言形成鲜明对比,本文将为大家详细介绍Go语言中错误处理详细方法,希望对大家有所帮助... 目录1 Go 错误处理哲学与核心机制1.1 错误接口设计1.2 错误与异常的区别2 错误创建与检查2.1 基础

springboot依靠security实现digest认证的实践

《springboot依靠security实现digest认证的实践》HTTP摘要认证通过加密参数(如nonce、response)验证身份,避免明文传输,但存在密码存储风险,相比基本认证更安全,却因... 目录概述参数Demopom.XML依赖Digest1Application.JavaMyPasswo

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Java 结构化并发Structured Concurrency实践举例

《Java结构化并发StructuredConcurrency实践举例》Java21结构化并发通过作用域和任务句柄统一管理并发生命周期,解决线程泄漏与任务追踪问题,提升代码安全性和可观测性,其核心... 目录一、结构化并发的核心概念与设计目标二、结构化并发的核心组件(一)作用域(Scopes)(二)任务句柄

Java中的Schema校验技术与实践示例详解

《Java中的Schema校验技术与实践示例详解》本主题详细介绍了在Java环境下进行XMLSchema和JSONSchema校验的方法,包括使用JAXP、JAXB以及专门的JSON校验库等技术,本文... 目录1. XML和jsON的Schema校验概念1.1 XML和JSON校验的必要性1.2 Sche

SpringBoot集成WebService(wsdl)实践

《SpringBoot集成WebService(wsdl)实践》文章介绍了SpringBoot项目中通过缓存IWebService接口实现类的泛型入参类型,减少反射调用提升性能的实现方案,包含依赖配置... 目录pom.XML创建入口ApplicationContextUtils.JavaJacksonUt

Java Docx4j类库简介及使用示例详解

《JavaDocx4j类库简介及使用示例详解》Docx4j是一个强大而灵活的Java库,非常适合需要自动化生成、处理、转换MicrosoftOffice文档的服务器端或后端应用,本文给大家介绍Jav... 目录1.简介2.安装与依赖3.基础用法示例3.1 创建一个新 DOCX 并添加内容3.2 读取一个已存

MyCat分库分表的项目实践

《MyCat分库分表的项目实践》分库分表解决大数据量和高并发性能瓶颈,MyCat作为中间件支持分片、读写分离与事务处理,本文就来介绍一下MyCat分库分表的实践,感兴趣的可以了解一下... 目录一、为什么要分库分表?二、分库分表的常见方案三、MyCat简介四、MyCat分库分表深度解析1. 架构原理2. 分

Java 中的 equals 和 hashCode 方法关系与正确重写实践案例

《Java中的equals和hashCode方法关系与正确重写实践案例》在Java中,equals和hashCode方法是Object类的核心方法,广泛用于对象比较和哈希集合(如HashMa... 目录一、背景与需求分析1.1 equals 和 hashCode 的背景1.2 需求分析1.3 技术挑战1.4