autoML 前瞻与实践 ---- H2O Sparkling Water简介

2023-10-09 15:30

本文主要是介绍autoML 前瞻与实践 ---- H2O Sparkling Water简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章大纲

  • 简介
  • Sparkling Water
    • 典型应用场景 Typical Use Case
    • Requirements
    • Installing and Starting
  • PySparkling
    • 安装
    • 典型应用场景
      • Model Building
      • Data Munging
      • Stream Processing
  • 参考文档
    • H2O Sparkling Water
    • PySparkling


简介

Sparkling Water allows users to combine the fast, scalable machine learning algorithms of H2O with the capabilities of Spark. With Sparkling Water, users can drive computation from Scala/R/Python and utilize the H2O Flow UI, providing an ideal machine learning platform for application developers.

Spark is an elegant and powerful general-purpose, open-source, in-memory platform with tremendous momentum. H2O is an in-memory application for machine learning that is reshaping how people apply math and predictive analytics to their business problems.

Integrating these two open-source environments provides a seamless experience for users who want to make a query using Spark SQL, feed the results into H2O to build a model and make predictions, and then use the results again in Spark. For any given problem, better interoperability between tools provides a better experience.

Sparkling Water is licensed under the Apache License, Version 2.0.

Sparking Water擅长利用现有的基于Spark的工作流,这些工作流需要调用高级机器学习算法。一个典型的例子是借助sparkapi进行数据挖掘,其中一个准备好的表被传递给H2O深度学习算法。构建的深度学习模型基于测试数据估计不同的度量,这些度量可用于Spark工作流的其余部分。


Sparkling Water

  • github :https://github.com/h2oai/sparkling-water

典型应用场景 Typical Use Case

Sparkling Water excels in leveraging existing Spark-based workflows that need to call advanced machine learning algorithms. A typical example involves data munging with the help of a Spark API, where a prepared table is passed to the H2O DeepLearning algorithm. The constructed DeepLearning model estimates different metrics based on the testing data, which can be used in the rest of the Spark workflow.

Sparking Water擅长利用现有的基于Spark的工作流,这些工作流需要调用高级机器学习算法。一个典型的例子是借助spark api进行数据挖掘, 使用一个准备好的表被传递给H2O进行深度学习算法自动学习。构建的深度学习模型基于测试数据估计不同的度量,这些度量可用于Spark工作流的其余部分。

Requirements

  • Linux/OS X/Windows

  • Java 1.8+

  • Python 2.7+ For Python version of Sparkling Water (PySparkling)

  • Spark 2.2 and SPARK_HOME shell variable must point to your local Spark installation

Installing and Starting


h2o 基本设计理念

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

Sparkling Water supports two types of backends: internal and external.

在这里插入图片描述

在这里插入图片描述


PySparkling

文档:
https://docs.h2o.ai/sparkling-water/2.3/latest-stable/doc/pysparkling.html#pysparkling

安装:
https://docs.h2o.ai/sparkling-water/3.1/latest-stable/doc/install/install_and_start.html#download-and-run-locally

代码样例:
https://github.com/h2oai/sparkling-water/tree/master/examples#step-by-step-weather-data-example

安装

Which H2O package should I install?

The H2O distribution zip file contains two Python installation artifacts (wheel files): h2o and h2o_client. You can install the full-featured “h2o” package that can be used in a standalone setup (as well as cluster deployment), or you can choose client-only version of the package - “h2o_client”.

  • h2o: Universal deployment package - can be used in standalone mode (eg. H2O started on users laptop) or it can be used to connect to an H2O cluster. This is what most users will choose to install.

  • h2o_client: A variant of the h2o package that doesn’t come with the H2O java code and cannot be used in standalone deployments. This version is suited especially for enterprise deployments where users are connecting to H2O clusters, and starting a standalone H2O instance on an edge node needs to be prevented.

Both packages provide identical APIs and sets of features.

PySparkling is an integration of Python with Sparkling Water. It allows the user to start H2O services on a Spark cluster from Python API.

In the PySparkling driver program, the Spark Context, which uses Py4J to start the driver JVM and the Java Spark Context, is used to create the H2O Context (hc). That, in turn, starts an H2O cloud (cluster) in the Spark ecosystem. Once the H2O cluster is up, the H2O Python package is used to interact with it and run H2O algorithms. All pure H2O calls are executed via H2O’s REST API interface. Users can easily integrate their regular PySpark workflow with H2O algorithms using PySparkling.

PySparkling programs can be launched as an application or in an interactive shell or notebook environment.

安装脚本

conda create -n myspark312 python=3.9
conda activate myspark312
conda install ipykernelpip install pyspark==3.1.2
pip install numpypip install h2o_pysparkling_3.1

我们安装后的主要目标是直接使用h2o 的api 调用pyspark 的 sparksession

先来看看源文件:

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#import h2o
import numbers
import warnings
from ai.h2o.sparkling.H2OConf import H2OConf
from ai.h2o.sparkling.Initializer import Initializer
from h2o.frame import H2OFrame
from h2o.utils.typechecks import assert_is_type, Enum
from pyspark.rdd import RDD
from pyspark.sql import SparkSession
from pyspark.sql.dataframe import DataFrame
from pyspark.sql.types import StringType, BooleanType, IntegerType, LongType, FloatTypeclass H2OContext(object):__isConnected = Falsedef __init__(self):"""This constructor is used just to initialize the environment. It does not start H2OContext.To start H2OContext use one of the getOrCreate methods. This constructor is internally used in those methods"""try:Initializer.load_sparkling_jar()except:raisedef __h2o_connect(h2o_context):schema = h2o_context._jhc.getConf().getScheme()conf = h2o_context._confkwargs = {}kwargs["https"] = schema == "https"kwargs["verify_ssl_certificates"] = conf.verifySslCertificates()kwargs["cacert"] = conf.sslCACert()if conf.userName() and conf.password():kwargs["auth"] = (conf.userName(), conf.password())url = "{}://{}:{}".format(schema, h2o_context._client_ip, h2o_context._client_port)if conf.contextPath() is not None:url = "{}/{}".format(url, conf.contextPath())return h2o.connect(url=url, **kwargs)@staticmethoddef getOrCreate(conf=None):"""Get existing or create new H2OContext based on provided H2O configuration. If the conf parameter is set thenconfiguration from it is used. Otherwise the configuration properties passed to Sparkling Water are used.If the values are not found the default values are used in most of the cases. The default cluster modeis internal, ie. spark.ext.h2o.external.cluster.mode=false:param conf: H2O configuration as instance of H2OConf:return:  instance of H2OContext"""# Workaround for bug in Spark 2.1 as SparkSession created in PySpark is not seen in Java# and call SparkSession.builder.getOrCreate on Java side creates a new session, which is not# desirableactiveSession = SparkSession._instantiatedSessionjvm = activeSession.sparkContext._jvmjvm.org.apache.spark.sql.SparkSession.setDefaultSession(activeSession._jsparkSession)if conf is not None:selected_conf = confelse:selected_conf = H2OConf()selected_conf.set("spark.ext.h2o.client.language", "python")h2o_context = H2OContext()# Create backing H2OContexth2o_context._jvm = jvmpackage = getattr(jvm.ai.h2o.sparkling, "H2OContext$")module = package.__getattr__("MODULE$")jhc = module.getOrCreate(selected_conf._jconf)h2o_context._jhc = jhch2o_context._conf = selected_confh2o_context._client_ip = jhc.h2oLocalClientIp()h2o_context._client_port = jhc.h2oLocalClientPort()# Create H2O REST API clientif not h2o_context.__isClientConnected() or not H2OContext.__isConnected:h2o_context.__h2o_connect()H2OContext.__isConnected = Trueh2o_context.__setClientConnected()print(h2o_context)return h2o_contextdef __isStopped(self):hc = self._jhcfield = hc.getClass().getDeclaredField("stopped")field.setAccessible(True)return field.get(hc)def __isClientConnected(self):field = self.__getClientConnectedField()return field.get(self._jhc)def __setClientConnected(self):field = self.__getClientConnectedField()field.set(self._jhc, True)def __getClientConnectedField(self):field = self._jhc.getClass().getDeclaredField("clientConnected")field.setAccessible(True)return fielddef stop(self, stopSparkContext=False):h2o.connection().close()scalaStopMethod = getattr(self._jhc, "ai$h2o$sparkling$H2OContext$$stop")scalaStopMethod(stopSparkContext, False, False)  # stopSpark = False, stopJVM = False, inShutdownHook = Falsedef downloadH2OLogs(self, destination, container="ZIP"):assert_is_type(container, Enum("ZIP", "LOG"))return self._jhc.downloadH2OLogs(destination, container)def __str__(self):if self.__isClientConnected() and not self.__isStopped():return self._jhc.toString()else:return "H2OContext has been stopped or hasn't been created. Call H2OContext.getOrCreate() or " \"H2OContext.getOrCreate(conf) to create a new one."def __repr__(self):self.show()return ""def show(self):print(self)def getConf(self):return self._confdef setH2OLogLevel(self, level):self._jhc.setH2OLogLevel(level)def getH2OLogLevel(self):return self._jhc.getH2OLogLevel()def importHiveTable(self, database="default", table=None, partitions=None, allowMultiFormat=False):return h2o.import_hive_table(database, table, partitions, allowMultiFormat)def asSparkFrame(self, h2oFrame, copyMetadata=True):"""Transforms given H2OFrame to Spark DataFrameParameters----------h2oFrame : H2OFramecopyMetadata: Bool = TrueReturns-------Spark DataFrame"""if isinstance(h2oFrame, H2OFrame):frame_id = h2oFrame.frame_idjdf = self._jhc.asSparkFrame(frame_id, copyMetadata)sqlContext = SparkSession.builder.getOrCreate()._wrappeddf = DataFrame(jdf, sqlContext)# Attach h2o_frame to dataframe which forces python not to delete the frame when we leave the scope of this# method.# Without this, after leaving this method python would garbage collect the frame since it's not used# anywhere and spark. when executing any action on this dataframe, will fail since the frame# would be missing.df._h2o_frame = h2oFramereturn dfdef asH2OFrame(self, sparkFrame, h2oFrameName=None, fullCols=-1):"""Transforms given Spark RDD or DataFrame to H2OFrame.Parameters----------sparkFrame : Spark RDD or DataFrameh2oFrameName : Optional name for resulting H2OFramefullCols : number of first n columns which are sent to the client together with the dataReturns-------H2OFrame which contains data of original input Spark data structure"""assert_is_type(sparkFrame, DataFrame, RDD)df = H2OContext.__prepareSparkDataForConversion(self._jvm, sparkFrame)if h2oFrameName is None:key = self._jhc.asH2OFrame(df._jdf).frameId()else:key = self._jhc.asH2OFrame(df._jdf, h2oFrameName).frameId()return H2OFrame.get_frame(key, full_cols=fullCols, light=True)@staticmethoddef __prepareSparkDataForConversion(_jvm, sparkData):if isinstance(sparkData, DataFrame):return sparkDataelif sparkData.isEmpty():return sparkData.toDF()else:session = SparkSession.builder.getOrCreate()first = sparkData.first()if isinstance(first, (str, bool, numbers.Integral, float)):if isinstance(first, str):return session.createDataFrame(sparkData, StringType())elif isinstance(first, bool):return session.createDataFrame(sparkData, BooleanType())elif (isinstance(sparkData.min(), numbers.Integral) and isinstance(sparkData.max(), numbers.Integral)):if sparkData.min() >= _jvm.Integer.MIN_VALUE and sparkData.max() <= _jvm.Integer.MAX_VALUE:return session.createDataFrame(sparkData, IntegerType())elif sparkData.min() >= _jvm.Long.MIN_VALUE and sparkData.max() <= _jvm.Long.MAX_VALUE:return session.createDataFrame(sparkData, LongType())else:warnings.warn("Maximal or minimal number in RDD is too big to convert to Java. Treating numbers as strings.")return session.createDataFrame(sparkData, StringType())elif isinstance(first, float):## Spark would fail when creating data frame if there is int type in RDD[Float]## Convert explicitly all to floatreturn session.createDataFrame(sparkData.map(lambda x: float(x)), FloatType())else:raise ValueError('Unreachable code')else:return session.createDataFrame(sparkData)

上面的安装,我使用,windows 子系统,还以为 文件可以在系统上找到,结果发现,wsl 现在直接使用了一个虚拟磁盘文件:
wsl 路径:C:\Users\wangyny\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu20.04onWindows_79rhkp1fndgsc\LocalState
在这里插入图片描述

典型应用场景

Model Building

A typical example involves multiple data transformations with the help of Spark
API, where a final form of data is transformed into an H2O frame and passed
to an H2O algorithm. The constructed model estimates different metrics based

on the testing data or gives a prediction that can be used in the rest of the
data pipeline (see Figure 1).
在这里插入图片描述

Data Munging

Another use-case includes Sparkling Water as a provider of ad-hoc data transformations. Figure 2 shows a data pipeline benefiting from H2O’s parallel
data load and parse capabilities, while Spark API is used as another provider
of data transformations. Furthermore, H2O can be used as an in-place data
transformer.

Stream Processing

The last use-case depicted in Figure 3 introduces two data pipelines. The first
one, called an off-line training pipeline, is invoked regularly (e.g., every hour or
every day), and utilizes both Spark and H2O API. The off-line pipeline provides
an H2O model as output. The H2O API allows the model to be exported in a
form independent on H2O run-time. The second pipeline processes streaming
data (with help of Spark Streaming or Storm) and utilizes the model trained in
the first pipeline to score the incoming data. Since the model is exported with

在这里插入图片描述
no run-time dependency on H2O, the streaming pipeline can be lightweight and
independent on H2O or Sparkling Water infrastructure.
 Sparkling Water used as an off-line model producer feeding models into a stream-based data pipeline
Sparkling Water used as an off-line model producer feeding models
into a stream-based data pipeline.



参考文档

H2O Sparkling Water

H2O Sparkling Water documentation

  • https://databricks.com/blog/2014/06/30/sparkling-water-h20-spark.html

PySparkling


PySparkling

  • https://github.com/MachineLP/CodeFun/blob/master/05-auto_ml_dl/01-auto_ml/01-%E8%87%AA%E5%8A%A8%E5%8C%96%E7%89%B9%E5%BE%81%E5%B7%A5%E7%A8%8B.md

  • https://bbs.huaweicloud.com/blogs/134113

  • 可视化与拖拽式建模

这篇关于autoML 前瞻与实践 ---- H2O Sparkling Water简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/173828

相关文章

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

在Java中使用OpenCV实践

《在Java中使用OpenCV实践》用户分享了在Java项目中集成OpenCV4.10.0的实践经验,涵盖库简介、Windows安装、依赖配置及灰度图测试,强调其在图像处理领域的多功能性,并计划后续探... 目录前言一 、OpenCV1.简介2.下载与安装3.目录说明二、在Java项目中使用三 、测试1.测

MyBatis-Plus 自动赋值实体字段最佳实践指南

《MyBatis-Plus自动赋值实体字段最佳实践指南》MyBatis-Plus通过@TableField注解与填充策略,实现时间戳、用户信息、逻辑删除等字段的自动填充,减少手动赋值,提升开发效率与... 目录1. MyBATis-Plus 自动赋值概述1.1 适用场景1.2 自动填充的原理1.3 填充策略

Olingo分析和实践之EDM 辅助序列化器详解(最佳实践)

《Olingo分析和实践之EDM辅助序列化器详解(最佳实践)》EDM辅助序列化器是ApacheOlingoOData框架中无需完整EDM模型的智能序列化工具,通过运行时类型推断实现灵活数据转换,适用... 目录概念与定义什么是 EDM 辅助序列化器?核心概念设计目标核心特点1. EDM 信息可选2. 智能类

Olingo分析和实践之OData框架核心组件初始化(关键步骤)

《Olingo分析和实践之OData框架核心组件初始化(关键步骤)》ODataSpringBootService通过初始化OData实例和服务元数据,构建框架核心能力与数据模型结构,实现序列化、URI... 目录概述第一步:OData实例创建1.1 OData.newInstance() 详细分析1.1.1

Olingo分析和实践之ODataImpl详细分析(重要方法详解)

《Olingo分析和实践之ODataImpl详细分析(重要方法详解)》ODataImpl.java是ApacheOlingoOData框架的核心工厂类,负责创建序列化器、反序列化器和处理器等组件,... 目录概述主要职责类结构与继承关系核心功能分析1. 序列化器管理2. 反序列化器管理3. 处理器管理重要方

虚拟机Centos7安装MySQL数据库实践

《虚拟机Centos7安装MySQL数据库实践》用户分享在虚拟机安装MySQL的全过程及常见问题解决方案,包括处理GPG密钥、修改密码策略、配置远程访问权限及防火墙设置,最终通过关闭防火墙和停止Net... 目录安装mysql数据库下载wget命令下载MySQL安装包安装MySQL安装MySQL服务安装完成

SpringBoot整合(ES)ElasticSearch7.8实践

《SpringBoot整合(ES)ElasticSearch7.8实践》本文详细介绍了SpringBoot整合ElasticSearch7.8的教程,涵盖依赖添加、客户端初始化、索引创建与获取、批量插... 目录SpringBoot整合ElasticSearch7.8添加依赖初始化创建SpringBoot项

Zabbix在MySQL性能监控方面的运用及最佳实践记录

《Zabbix在MySQL性能监控方面的运用及最佳实践记录》Zabbix通过自定义脚本和内置模板监控MySQL核心指标(连接、查询、资源、复制),支持自动发现多实例及告警通知,结合可视化仪表盘,可有效... 目录一、核心监控指标及配置1. 关键监控指标示例2. 配置方法二、自动发现与多实例管理1. 实践步骤

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.