使用深度学习进行脑肿瘤检测和定位:第 2 部分

2023-10-09 15:20

本文主要是介绍使用深度学习进行脑肿瘤检测和定位:第 2 部分,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

问题陈述

通过使用 Kaggle 的 MRI 数据集的图像分割来预测和定位脑肿瘤。

这是该系列的第二部分。如果你还没有阅读第一部分,我建议你访问使用深度学习进行脑肿瘤检测和定位:第1部分以更好地理解代码,因为这两个部分是相互关联的。

文章地址:https://mp.weixin.qq.com/s/vBsTsVvHjA0gtQy3X1wdmw

我们在 ResNet50 上训练了一个分类模型,该模型使用回调对脑部 MRI 是否有肿瘤进行分类以提高我们的性能。在这一部分,我们将训练一个模型来使用图像分割来定位肿瘤。

先决条件

深度学习

数据集链接:https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation

现在,让我们开始实施第二部分,即构建分割模型来定位肿瘤。

图像分割的目标是在像素级别理解图像。它将每个像素与某个类相关联。图像分割模型产生的输出称为图像的蒙版。

  • 首先,从我们在上一部分创建的数据帧中选择蒙版值为 1 的记录,因为只有肿瘤存在,我们才能对其进行定位。

# Get the dataframe containing MRIs which have masks associated with them.
brain_df_mask = brain_df[brain_df['mask'] == 1]
brain_df_mask.shape

输出:(1373, 4)

  • 将数据拆分为训练和测试数据集。首先,我们将整个数据拆分为训练和验证数据,然后将一半的验证数据拆分为测试数据。

from sklearn.model_selection import train_test_split
X_train, X_val = train_test_split(brain_df_mask, test_size=0.15)
X_test, X_val = train_test_split(X_val, test_size=0.5)
  • 我们将再次使用DataGenerator 生成虚拟数据,即training_generator 和validation_generator。为此,我们将首先创建要传递到生成器的图像和蒙版路径的列表。

train_ids = list(X_train.image_path)
train_mask = list(X_train.mask_path)val_ids = list(X_val.image_path)
val_mask= list(X_val.mask_path)# Utilities file contains the code for custom data generator
from utilities import DataGenerator# create image generators
training_generator = DataGenerator(train_ids,train_mask)
validation_generator = DataGenerator(val_ids,val_mask)
  • 定义一个如下所示的方法 Resblock ,以在我们的深度学习模型中使用。

模型中使用 Resblocks 以获得更好的结果。这些块只是一堆层。resblocks 的主要功能是在顶部学习残差函数,而信息沿底部传递不变。

def resblock(X, f):# make a copy of inputX_copy = XX = Conv2D(f, kernel_size = (1,1) ,strides = (1,1),kernel_initializer ='he_normal')(X)X = BatchNormalization()(X)X = Activation('relu')(X) X = Conv2D(f, kernel_size = (3,3), strides =(1,1), padding = 'same', kernel_initializer ='he_normal')(X)X = BatchNormalization()(X)X_copy = Conv2D(f, kernel_size = (1,1), strides =(1,1), kernel_initializer ='he_normal')(X_copy)X_copy = BatchNormalization()(X_copy)# Adding the output from main path and short path togetherX = Add()([X,X_copy])X = Activation('relu')(X)return X
  • 同样,定义 upsample_concat 方法来放大和连接传递的值。Upsampling 层是一个简单的层,没有权重,可以将输入的维度加倍。

def upsample_concat(x, skip):x = UpSampling2D((2,2))(x)merge = Concatenate()([x, skip])return merge
  • 建立一个分割模型,添加下面显示的层,包括上面定义的 resblock 和 upsample_concat。

input_shape = (256,256,3)# Input tensor shape
X_input = Input(input_shape)# Stage 1
conv1_in = Conv2D(16,3,activation= 'relu', padding = 'same', kernel_initializer ='he_normal')(X_input)
conv1_in = BatchNormalization()(conv1_in)
conv1_in = Conv2D(16,3,activation= 'relu', padding = 'same', kernel_initializer ='he_normal')(conv1_in)
conv1_in = BatchNormalization()(conv1_in)
pool_1 = MaxPool2D(pool_size = (2,2))(conv1_in)# Stage 2
conv2_in = resblock(pool_1, 32)
pool_2 = MaxPool2D(pool_size = (2,2))(conv2_in)# Stage 3
conv3_in = resblock(pool_2, 64)
pool_3 = MaxPool2D(pool_size = (2,2))(conv3_in)# Stage 4
conv4_in = resblock(pool_3, 128)
pool_4 = MaxPool2D(pool_size = (2,2))(conv4_in)# Stage 5 (Bottle Neck)
conv5_in = resblock(pool_4, 256)# Upscale stage 1
up_1 = upsample_concat(conv5_in, conv4_in)
up_1 = resblock(up_1, 128)# Upscale stage 2
up_2 = upsample_concat(up_1, conv3_in)
up_2 = resblock(up_2, 64)# Upscale stage 3
up_3 = upsample_concat(up_2, conv2_in)
up_3 = resblock(up_3, 32)# Upscale stage 4
up_4 = upsample_concat(up_3, conv1_in)
up_4 = resblock(up_4, 16)# Final Output
output = Conv2D(1, (1,1), padding = "same", activation = "sigmoid")(up_4)model_seg = Model(inputs = X_input, outputs = output )
  • 编译上面训练的模型。这次我们将自定义优化器的参数。Focal tversky 是损失函数,tversky 是度量。

# Utilities file also contains the code for custom loss function
from utilities import focal_tversky, tversky# Compile the model
adam = tf.keras.optimizers.Adam(lr = 0.05, epsilon = 0.1)
model_seg.compile(optimizer = adam, loss = focal_tversky, metrics = [tversky])
  • 现在,你知道我们在分类器模型中使用的回调。我们将使用相同的方法来获得更好的性能。最后,我们训练我们的分割模型。

# use early stopping to exit training if validation loss is not decreasing even after certain epochs.
earlystopping = EarlyStopping(monitor='val_loss', mode='min', verbose=1, patience=20)# save the best model with lower validation loss
checkpointer = ModelCheckpoint(filepath="ResUNet-weights.hdf5", verbose=1, save_best_only=True)model_seg.fit(training_generator, epochs = 1, validation_data = validation_generator, callbacks = [checkpointer, earlystopping])
  • 预测测试数据集的蒙版。这里,model是前面训练的分类器模型,model_seg是上面训练的分割模型。

from utilities import prediction# making prediction
image_id, mask, has_mask = prediction(test, model, model_seg)

输出将为我们提供图像路径、预测蒙版和类标签。

  • 根据预测结果创建数据帧并与 image_path 上的测试数据帧合并。

# creating a dataframe for the result
df_pred = pd.DataFrame({'image_path': image_id,'predicted_mask': mask,'has_mask': has_mask})# Merge the dataframe containing predicted results with the original test data.
df_pred = test.merge(df_pred, on = 'image_path')
df_pred.head()

正如你在输出中看到的那样,我们现在已将最终预测的蒙版合并到我们的数据帧中。

  • 最后,将原始图像、原始蒙版和预测蒙版一起可视化,以分析我们的分割模型的准确性。

count = 0 
fig, axs = plt.subplots(10, 5, figsize=(30, 50))
for i in range(len(df_pred)):if df_pred['has_mask'][i] == 1 and count < 5:# read the images and convert them to RGB formatimg = io.imread(df_pred.image_path[i])img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)axs[count][0].title.set_text("Brain MRI")axs[count][0].imshow(img)# Obtain the mask for the image mask = io.imread(df_pred.mask_path[i])axs[count][1].title.set_text("Original Mask")axs[count][1].imshow(mask)# Obtain the predicted mask for the image predicted_mask = np.asarray(df_pred.predicted_mask[i])[0].squeeze().round()axs[count][2].title.set_text("AI Predicted Mask")axs[count][2].imshow(predicted_mask)# Apply the mask to the image 'mask==255'img[mask == 255] = (255, 0, 0)axs[count][3].title.set_text("MRI with Original Mask (Ground Truth)")axs[count][3].imshow(img)img_ = io.imread(df_pred.image_path[i])img_ = cv2.cvtColor(img_, cv2.COLOR_BGR2RGB)img_[predicted_mask == 1] = (0, 255, 0)axs[count][4].title.set_text("MRI with AI Predicted Mask")axs[count][4].imshow(img_)count += 1fig.tight_layout()

输出显示我们的分割模型非常好地定位了肿瘤。做得好!

此外,你可以尝试向目前训练的模型添加更多层并分析性能。还可以将类似的解决方案应用于其他问题陈述,因为图像分割是当今非常感兴趣的领域。

☆ END ☆

如果看到这里,说明你喜欢这篇文章,请转发、点赞。微信搜索「uncle_pn」,欢迎添加小编微信「 woshicver」,每日朋友圈更新一篇高质量博文。

扫描二维码添加小编↓

这篇关于使用深度学习进行脑肿瘤检测和定位:第 2 部分的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/173760

相关文章

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

python使用try函数详解

《python使用try函数详解》Pythontry语句用于异常处理,支持捕获特定/多种异常、else/final子句确保资源释放,结合with语句自动清理,可自定义异常及嵌套结构,灵活应对错误场景... 目录try 函数的基本语法捕获特定异常捕获多个异常使用 else 子句使用 finally 子句捕获所

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符