课题学习(五)----阅读论文《抗差自适应滤波的导向钻具动态姿态测量方法》

本文主要是介绍课题学习(五)----阅读论文《抗差自适应滤波的导向钻具动态姿态测量方法》,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、简介

  抗差自适应滤波:利用等价权函数自适应因子合理的分配信息,有效地滤除钻具振动对动态姿态测量的影响。、
  针对导向钻井工具动态测量受钻具振动的影响而导致测量不准确的问题,提出一种抗差自适应滤波的动态空间姿态测量方法。通过分析钻具振动对姿态测量的影响,并吸收抗差估计和自适应滤波的优点,利用抗差等价权矩阵自适应的确定量测信息,通过自适应因子调整状态模型信息对状态参数的整体贡献,从而消除钻具振动对动态姿态测量的影响,获得实时性强、精度高的姿态参数,提高钻井效率,降低钻井风险。
  在实际钻井过程中,钻头切削岩层、钻柱与井壁的碰撞等会使钻具产生横向振动、纵向振动和扭转振动等,这些振动严重的影响了测量传感器输出信号的正确性。
  抗差自适应滤波的基本思想是:当观测值存在异常时,对观测值采用抗差估计原则,能够控制观测异常的影响;当动力学模型存在异常误差时,将动力学模型信息作为一个整体,采用统一的自适应因子调整动力学模型信息对状态参数的整体贡献。

二、测量系统建模

  方位角 ψ \psi ψ为磁北方向沿逆时针方向到Z 轴在水平面的投影间的夹角,其范围在0°~360°之间,井斜角 θ \theta θ为钻进轴Z 轴与水平面所成的夹角,规定向下为正,反之为负,其范围为-90°~90°,工具面向角 γ \gamma γ 则为钻孔横截面内由钻孔高边到Y 轴所成的角度,范围在0°~360°之间。这样,我们就准确的定义了井下钻具的方位角 ψ \psi ψ 、井斜角 θ \theta θ 和工具面向角 γ \gamma γ ,且角度的正向都符合右手系原则。
在这里插入图片描述
  加速度计和磁通门安装如下:
在这里插入图片描述
在这里插入图片描述
  根据上述理论,建立导向钻井工具姿态测量的动
态数学模型,给出状态方程和量测方程: x k ^ = Φ k , k − 1 x k − 1 + w k \hat{x_k} = \Phi_{k,k-1}x_{k-1}+w_{k} xk^=Φk,k1xk1+wk
   x k x_k xk x k − 1 x_{k-1} xk1分别为 t k t_k tk t k − 1 t_{k-1} tk1时刻的n 维状态参数向量, Φ k , k − 1 \Phi_{k,k-1} Φk,k1为n× n维状态转移矩阵; w k w_k wk 为p 维动力学模型误差向量,其数学期望为0,协方差矩阵为: ∑ w k w i = { ∑ w k , k = i 0 , k ≠ i \sum_{wkwi}= \begin{cases}\sum_{wk},\quad &k=i\\0,\quad &k\neq i\end{cases} wkwi={wk,0,k=ik=i
   w k wk wk为高斯白噪声序列。
  设 t k t_k tk时刻的量测方程为 y k = H k x k + v k y_k=H_kx_k+v_k yk=Hkxk+vk
   y k y_k yk t k t_k tk时刻的m维观测向量; H k H_k Hk为m× n维测量矩阵,也称为观测矩阵; v k v_k vk为m维观测误差向量,其数学期望为0,协方差矩阵为 ∑ v k v i = { ∑ v k , k = i 0 , k ≠ i \sum_{vkvi}= \begin{cases}\sum_{vk},\quad &k=i\\0,\quad &k\neq i\end{cases} vkvi={vk,0,k=ik=i
   v k v_k vk为高斯白噪声序列。在 i = k i=k i=k时, w k w_k wk v k v_k vk的协方差矩阵分别为 ∑ w k \sum_{wk} wk ∑ v k \sum_{vk} vk,这里 w k w_k wk, w i w_i wi, w k w_k wk, v i v_i vi互不相关。
  状态向量为: X = [ ψ , θ , γ ] T X=\begin{bmatrix}\psi,\theta,\gamma\end{bmatrix}^T X=[ψ,θ,γ]T,表明直接将钻具姿态参数作为状态向量,而
非姿态误差作为状态。

三、动态姿态测量

在这里插入图片描述
   X ‾ k = Φ k , k − 1 X k − 1 ^ \overline{X}_{k} = \Phi_{k,k-1}\hat{X_{k-1}} Xk=Φk,k1Xk1^为系统的状态预测方程。 X ‾ k \overline{X}_{k} Xk t k t_k tk的状态预测方程, X k − 1 ^ \hat{X_{k-1}} Xk1^ t k − 1 t_{k-1} tk1为状态估计向量。设状态预测向量 X ‾ k \overline{X}_k Xk的误差方程为: V X ‾ k = X ^ k − X ‾ k = X ^ k − Φ k , k − 1 X ^ k − 1 V_{\overline{X}_k} = \hat{X}_k-\overline{X}_k=\hat{X}_k-\Phi_{k,k-1}\hat{X}_{k-1} VXk=X^kXk=X^kΦk,k1X^k1
   V X ‾ k V_{\overline{X}_k} VXk t k t_k tk时刻状态预测向量 X ^ k \hat{X}_k X^k的残差向量。
  残差向量和新息向量(也称为预测残差向量)分别为:
V k = H k X ^ k − Y k V_k=H_k\hat{X}_k-Y_k Vk=HkX^kYk V ‾ k = H k X ‾ k − Y k \overline{V}_k=H_k\overline{X}_k-Y_k Vk=HkXkYk
   V k V_k Vk V ‾ k \overline{V}_k Vk的协方差矩阵为: ∑ V k = ∑ k − H k ∑ X ^ k H k T \sum_{V_k} = \sum_{k}-H_k\sum_{\hat{X}_k}H^T_k Vk=kHkX^kHkT ∑ V ‾ k = ∑ k + H k ∑ V ‾ k H k T \sum_{\overline{V}_k} = \sum_{k}+H_k\sum_{\overline{V}_k}H^T_k Vk=k+HkVkHkT
  合理地选择自适应因子不但能够自适应地平衡动力学模型预测信息与量测信息的权比,而且能够控制动力学模型扰动异常对滤波解的影响。基于预测残差误差判别统计量的抗差自适应因子函数为:在这里插入图片描述
  等价权矩阵为:在这里插入图片描述

  上式中, P ‾ k \overline{P}_k Pk为观测向量的等价权矩阵, P k = ∑ k − 1 {P}_k=\sum_{k}^{-1} Pk=k1, P X ‾ k = ∑ X ‾ k − 1 P_{\overline{X}_k}=\sum_{\overline{X}_k}^{-1} PXk=Xk1
α k \alpha_k αk ≤1 ,其它符号意义同前。
在这里插入图片描述
K k = ( H k T P ‾ k H k + α k P X ‾ k ) − 1 H k T P ‾ k K_k=(H^T_k\overline{P}_kH_k+\alpha_kP_{\overline{X}_k})^{-1}H_k^T\overline{P}_k Kk=(HkTPkHk+αkPXk)1HkTPk在这里插入图片描述
  式中: K k K_k Kk 为增益矩阵,根据矩阵恒等式,可表示为: K k = α k P X ‾ k H k T ( H k α k P X ‾ k H k T + P ‾ k ) − 1 K_k=\alpha_kP_{\overline{X}_k}H_k^T(H_k\alpha_kP_{\overline{X}_k}H_k^T+\overline{P}_k)^{-1} Kk=αkPXkHkT(HkαkPXkHkT+Pk)1
  对量测信息采用抗差估计,自适应的确定观测噪声协方差矩阵,并利用自适应因子调节状态噪声的协方差矩阵,因此,可以有效的控制量测异常和动态模型噪声异常对空间状态参数估值的影响。

四、实验结果

  实验室地理条件为北纬34.24°,东经108.99°,地球自转角速度为15 (°)/h,磁倾角为55.4°,磁场强度为52.5 T,地球重力加速度为9.8 m/s2。在实验室条件下,根据测斜校验装置测量得到一组理想的实验数据。

五、往期回顾

课题学习(一)----静态测量
课题学习(二)----倾角和方位角的动态测量方法(基于磁场的测量系统)
课题学习(三)----倾角和方位角的动态测量方法(基于陀螺仪的测量系统)
课题学习(四)----四元数解法

这篇关于课题学习(五)----阅读论文《抗差自适应滤波的导向钻具动态姿态测量方法》的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/173340

相关文章

springboot如何通过http动态操作xxl-job任务

《springboot如何通过http动态操作xxl-job任务》:本文主要介绍springboot如何通过http动态操作xxl-job任务的问题,具有很好的参考价值,希望对大家有所帮助,如有错... 目录springboot通过http动态操作xxl-job任务一、maven依赖二、配置文件三、xxl-

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

MyBatis编写嵌套子查询的动态SQL实践详解

《MyBatis编写嵌套子查询的动态SQL实践详解》在Java生态中,MyBatis作为一款优秀的ORM框架,广泛应用于数据库操作,本文将深入探讨如何在MyBatis中编写嵌套子查询的动态SQL,并结... 目录一、Myhttp://www.chinasem.cnBATis动态SQL的核心优势1. 灵活性与可

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Mybatis嵌套子查询动态SQL编写实践

《Mybatis嵌套子查询动态SQL编写实践》:本文主要介绍Mybatis嵌套子查询动态SQL编写方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、实体类1、主类2、子类二、Mapper三、XML四、详解总结前言MyBATis的xml文件编写动态SQL

SpringBoot实现Kafka动态反序列化的完整代码

《SpringBoot实现Kafka动态反序列化的完整代码》在分布式系统中,Kafka作为高吞吐量的消息队列,常常需要处理来自不同主题(Topic)的异构数据,不同的业务场景可能要求对同一消费者组内的... 目录引言一、问题背景1.1 动态反序列化的需求1.2 常见问题二、动态反序列化的核心方案2.1 ht

golang实现动态路由的项目实践

《golang实现动态路由的项目实践》本文主要介绍了golang实现动态路由项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习... 目录一、动态路由1.结构体(数据库的定义)2.预加载preload3.添加关联的方法一、动态路由1

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

Python Selenium动态渲染页面和抓取的使用指南

《PythonSelenium动态渲染页面和抓取的使用指南》在Web数据采集领域,动态渲染页面已成为现代网站的主流形式,本文将从技术原理,环境配置,核心功能系统讲解Selenium在Python动态... 目录一、Selenium技术架构解析二、环境搭建与基础配置1. 组件安装2. 驱动配置3. 基础操作模