cv2 python 获取斑马线_python+opencv实现车道线检测

2023-10-09 12:59

本文主要是介绍cv2 python 获取斑马线_python+opencv实现车道线检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python+opencv车道线检测(简易实现),供大家参考,具体内容如下

技术栈:python+opencv

实现思路:

1、canny边缘检测获取图中的边缘信息;

2、霍夫变换寻找图中直线;

3、绘制梯形感兴趣区域获得车前范围;

4、得到并绘制车道线;

效果展示:

43bxgrxoynj.jpg

代码实现:

import cv2

import numpy as np

def canny():

gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)

#高斯滤波

blur = cv2.GaussianBlur(gray, (5, 5), 0)

#边缘检测

canny_img = cv2.Canny(blur, 50, 150)

return canny_img

def region_of_interest(r_image):

h = r_image.shape[0]

w = r_image.shape[1]

# 这个区域不稳定,需要根据图片更换

poly = np.array([

[(100, h), (500, h), (290, 180), (250, 180)]

])

mask = np.zeros_like(r_image)

# 绘制掩膜图像

cv2.fillPoly(mask, poly, 255)

# 获得ROI区域

masked_image = cv2.bitwise_and(r_image, mask)

return masked_image

if __name__ == '__main__':

image = cv2.imread('test.jpg')

lane_image = np.copy(image)

canny = canny()

cropped_image = region_of_interest(canny)

cv2.imshow("result", cropped_image)

cv2.waitKey(0)

霍夫变换加线性拟合改良:

效果图:

q4xhuimilww.jpg

代码实现:

主要增加了根据斜率作线性拟合过滤无用点后连线的操作;

import cv2

import numpy as np

def canny():

gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY)

blur = cv2.GaussianBlur(gray, (5, 5), 0)

canny_img = cv2.Canny(blur, 50, 150)

return canny_img

def region_of_interest(r_image):

h = r_image.shape[0]

w = r_image.shape[1]

poly = np.array([

[(100, h), (500, h), (280, 180), (250, 180)]

])

mask = np.zeros_like(r_image)

cv2.fillPoly(mask, poly, 255)

masked_image = cv2.bitwise_and(r_image, mask)

return masked_image

def get_lines(img_lines):

if img_lines is not None:

for line in lines:

for x1, y1, x2, y2 in line:

# 分左右车道

k = (y2 - y1) / (x2 - x1)

if k < 0:

lefts.append(line)

else:

rights.append(line)

def choose_lines(after_lines, slo_th): # 过滤斜率差别较大的点

slope = [(y2 - y1) / (x2 - x1) for line in after_lines for x1, x2, y1, y2 in line] # 获得斜率数组

while len(after_lines) > 0:

mean = np.mean(slope) # 计算平均斜率

diff = [abs(s - mean) for s in slope] # 每条线斜率与平均斜率的差距

idx = np.argmax(diff) # 找到最大斜率的索引

if diff[idx] > slo_th: # 大于预设的阈值选取

slope.pop(idx)

after_lines.pop(idx)

else:

break

return after_lines

def clac_edgepoints(points, y_min, y_max):

x = [p[0] for p in points]

y = [p[1] for p in points]

k = np.polyfit(y, x, 1) # 曲线拟合的函数,找到xy的拟合关系斜率

func = np.poly1d(k) # 斜率代入可以得到一个y=kx的函数

x_min = int(func(y_min)) # y_min = 325其实是近似找了一个

x_max = int(func(y_max))

return [(x_min, y_min), (x_max, y_max)]

if __name__ == '__main__':

image = cv2.imread('F:\\A_javaPro\\test.jpg')

lane_image = np.copy(image)

canny_img = canny()

cropped_image = region_of_interest(canny_img)

lefts = []

rights = []

lines = cv2.HoughLinesP(cropped_image, 1, np.pi / 180, 15, np.array([]), minLineLength=40, maxLineGap=20)

get_lines(lines) # 分别得到左右车道线的图片

good_leftlines = choose_lines(lefts, 0.1) # 处理后的点

good_rightlines = choose_lines(rights, 0.1)

leftpoints = [(x1, y1) for left in good_leftlines for x1, y1, x2, y2 in left]

leftpoints = leftpoints + [(x2, y2) for left in good_leftlines for x1, y1, x2, y2 in left]

rightpoints = [(x1, y1) for right in good_rightlines for x1, y1, x2, y2 in right]

rightpoints = rightpoints + [(x2, y2) for right in good_rightlines for x1, y1, x2, y2 in right]

lefttop = clac_edgepoints(leftpoints, 180, image.shape[0]) # 要画左右车道线的端点

righttop = clac_edgepoints(rightpoints, 180, image.shape[0])

src = np.zeros_like(image)

cv2.line(src, lefttop[0], lefttop[1], (255, 255, 0), 7)

cv2.line(src, righttop[0], righttop[1], (255, 255, 0), 7)

cv2.imshow('line Image', src)

src_2 = cv2.addWeighted(image, 0.8, src, 1, 0)

cv2.imshow('Finally Image', src_2)

cv2.waitKey(0)

待改进:

代码实用性差,几乎不能用于实际,但是可以作为初学者的练手项目;

斑马线检测思路:获取车前感兴趣区域,判断白色像素点比例即可实现;

行人检测思路:opencv有内置行人检测函数,基于内置的训练好的数据集;

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持聚米学院。

这篇关于cv2 python 获取斑马线_python+opencv实现车道线检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/172991

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

SpringBoot实现RSA+AES自动接口解密的实战指南

《SpringBoot实现RSA+AES自动接口解密的实战指南》在当今数据泄露频发的网络环境中,接口安全已成为开发者不可忽视的核心议题,RSA+AES混合加密方案因其安全性高、性能优越而被广泛采用,本... 目录一、项目依赖与环境准备1.1 Maven依赖配置1.2 密钥生成与配置二、加密工具类实现2.1

使用Python的requests库调用API接口的详细步骤

《使用Python的requests库调用API接口的详细步骤》使用Python的requests库调用API接口是开发中最常用的方式之一,它简化了HTTP请求的处理流程,以下是详细步骤和实战示例,涵... 目录一、准备工作:安装 requests 库二、基本调用流程(以 RESTful API 为例)1.

在Java中实现线程之间的数据共享的几种方式总结

《在Java中实现线程之间的数据共享的几种方式总结》在Java中实现线程间数据共享是并发编程的核心需求,但需要谨慎处理同步问题以避免竞态条件,本文通过代码示例给大家介绍了几种主要实现方式及其最佳实践,... 目录1. 共享变量与同步机制2. 轻量级通信机制3. 线程安全容器4. 线程局部变量(ThreadL

Python清空Word段落样式的三种方法

《Python清空Word段落样式的三种方法》:本文主要介绍如何用python-docx库清空Word段落样式,提供三种方法:设置为Normal样式、清除直接格式、创建新Normal样式,注意需重... 目录方法一:直接设置段落样式为"Normal"方法二:清除所有直接格式设置方法三:创建新的Normal样

Python调用LibreOffice处理自动化文档的完整指南

《Python调用LibreOffice处理自动化文档的完整指南》在数字化转型的浪潮中,文档处理自动化已成为提升效率的关键,LibreOffice作为开源办公软件的佼佼者,其命令行功能结合Python... 目录引言一、环境搭建:三步构建自动化基石1. 安装LibreOffice与python2. 验证安装

把Python列表中的元素移动到开头的三种方法

《把Python列表中的元素移动到开头的三种方法》在Python编程中,我们经常需要对列表(list)进行操作,有时,我们希望将列表中的某个元素移动到最前面,使其成为第一项,本文给大家介绍了把Pyth... 目录一、查找删除插入法1. 找到元素的索引2. 移除元素3. 插入到列表开头二、使用列表切片(Lis

Python按照24个实用大方向精选的上千种工具库汇总整理

《Python按照24个实用大方向精选的上千种工具库汇总整理》本文整理了Python生态中近千个库,涵盖数据处理、图像处理、网络开发、Web框架、人工智能、科学计算、GUI工具、测试框架、环境管理等多... 目录1、数据处理文本处理特殊文本处理html/XML 解析文件处理配置文件处理文档相关日志管理日期和

Python标准库datetime模块日期和时间数据类型解读

《Python标准库datetime模块日期和时间数据类型解读》文章介绍Python中datetime模块的date、time、datetime类,用于处理日期、时间及日期时间结合体,通过属性获取时间... 目录Datetime常用类日期date类型使用时间 time 类型使用日期和时间的结合体–日期时间(

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3