PDB Database - 高质量 RCSB PDB 蛋白质结构筛选与过滤

2023-10-09 12:50

本文主要是介绍PDB Database - 高质量 RCSB PDB 蛋白质结构筛选与过滤,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注我的CSDN:https://spike.blog.csdn.net/
本文地址:https://spike.blog.csdn.net/article/details/132307119

PDB

Protein Data Bank (PDB) 是一个收集和存储三维结构数据的公共数据库,主要包括蛋白质和核酸分子。PDB 由美国、欧洲和日本三个机构共同管理,每周更新一次。PDB 的目的是为生物学、生物化学、生物物理学和医学等领域的研究者提供结构信息,促进科学发现和教育。PDB 的数据可以通过网站、FTP 服务器或应用程序接口 (API) 免费获取,也可以通过各种工具和服务进行可视化、分析和下载。

根据不同维度,从 RCSB PDB 筛选与过滤出高质量的数据,用于下游任务的分析与处理,主要包括以下维度:

  1. 按 发布时间 (Release Date) 过滤。
  2. 按 单体 (Monomer) 或 多聚体 (Multimer) 过滤。
  3. 按 氨基酸类型,是RNA\DNA,还是蛋白质 (Protein) 过滤。
  4. 按 结构分辨率 (Resolution) 过滤。
  5. 按 相同氨基酸占比 过滤。
  6. 按 最短蛋白质链长 (Seq. Len.) 过滤。
  7. 按 实验方法 (Experiment Method) 过滤。

不同的算法,也有不同的过滤规则,具体可以参考 AlphaFold、ESMFold、UniFold 等相关论文。例如 PolyFold:
PolyFold
PDB 数据库的信息,参考:RCSB PDB 数据集 (2023.8) 的多维度信息统计

以全量 PDB 为例,共有 203657 条数据,即:

  1. 时间 [2021-09-30, 2023-01-01),剩余 15961,过滤 92.1628%。
  2. 过滤单链,剩余 11621,过滤 27.1913%。
  3. 过滤非蛋白,剩余 10416,过滤 10.3692%。
  4. 过滤分辨率,小于 9A,剩余 10325,过滤 0.8737%。
  5. 过滤重复残基,重复率大于等于0.8,剩余 10063,过滤 2.5375%。
  6. 过滤序列长度小于20,剩余 9096,过滤 9.6095%。
  7. 过滤实验方法,保留 XD\SN\EM\EC,剩余 9095,过滤 0.011%。

最终,从多聚体 10416 下降至 9095,保留率 87.32%。

处理脚本命令:

python3 scripts/dataset_generator.py -i data/pdb_base_info_202308.csv -o mydata/dataset/train.csv -b 2021-09-30 -e 2023-01-01

运行日志:

[Info] sample: 203657
[Info] filter [2021-09-30 ~ 2023-01-01): 15961/203657, 92.1628 %
[Info] filter monomer: 11621/15961, 27.1913%
[Info] filter na: 10416/11621, 10.3692%
[Info] filter resolution < 9: 10325/10416, 0.8737%
[Info] filter aa same >= 0.8: 10063/10325, 2.5375%
[Info] filter seq len < 20: 9096/10063, 9.6095%
[Info] filter experiment method (include XD|SN|EM|EC): 9095/9096, 0.011%

源码参考:

#!/usr/bin/env python
# -- coding: utf-8 --
"""
Copyright (c) 2022. All rights reserved.
Created by C. L. Wang on 2023/8/15
"""
import argparse
import ast
import collections
import os
import sys
from pathlib import Pathimport pandas as pdp = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
if p not in sys.path:sys.path.append(p)from myutils.project_utils import sort_dict_by_value
from root_dir import ROOT_DIR, DATA_DIRclass DatasetGenerator(object):"""根据多个条件,筛选构建 PDB 蛋白质结构的数据集"""def __init__(self):pass@staticmethoddef filter_release_date(df, date=("2021-09-30", "2023-01-01")):"""筛选发布日期"""df = df.sort_values(by=['release_date'])n0 = len(df)print(f"[Info] sample: {len(df)}")n_df = df.loc[(df['release_date'] >= f"{date[0]}") & (df['release_date'] < f"{date[1]}")]n1 = len(n_df)print(f"[Info] filter [{date[0]} ~ {date[1]}): {n1}/{n0}, {round(100 - (n1/n0 * 100), 4)} %")return n_df@staticmethoddef filter_monomer(df):"""筛选过滤 Monomer,保留 Multimer"""n0 = len(df)df_chain_type = df["chain_type"]flags = []for ct_str in df_chain_type:items = ct_str.split(",")if len(items) == 1:  # 过滤单链flags.append(False)else:flags.append(True)n_df = df.loc[flags]n1 = len(n_df)print(f"[Info] filter monomer: {n1}/{n0}, {round(100 - (n1/n0 * 100), 4)}%")return n_df@staticmethoddef filter_na(df):"""过滤 RNA、DNA,只保留 Protein"""n0 = len(df)df_chain_type = df["chain_type"]flags = []for ct_str in df_chain_type:items = ct_str.split(",")assert len(items) != 1if len(set(items)) != 1:  # 过滤NAflags.append(False)else:flags.append(True)n_df = df.loc[flags]n1 = len(n_df)print(f"[Info] filter na: {n1}/{n0}, {round(100 - (n1/n0 * 100), 4)}%")return n_df@staticmethoddef filter_resolution(df, r_val=9):"""过滤低分辨率"""n0 = len(df)n_df = df.loc[df["resolution"] < r_val]n1 = len(n_df)print(f"[Info] filter resolution < 9: {n1}/{n0}, {round(100 - (n1/n0 * 100), 4)}%")return n_df@staticmethoddef filter_same_aa(df, thr_ratio=0.8):"""过滤相同氨基酸占比较高"""n0 = len(df)df_seq = df["seq"]flags = []for item_str in df_seq:if not isinstance(item_str, str):flags.append(False)  # 去掉continueis_same = Falseitems = item_str.split(",")for item in items:n_item = len(item)num_aa_dict = collections.defaultdict(int)for aa in item:num_aa_dict[aa] += 1num_aa_data = sort_dict_by_value(num_aa_dict, reverse=True)v_max = num_aa_data[0][1]ratio = v_max / n_itemif ratio >= thr_ratio:# print(f"[Info] item: {item}")is_same = Truebreakif is_same:flags.append(False)  # 去掉else:flags.append(True)n_df = df.loc[flags]n1 = len(n_df)print(f"[Info] filter aa same >= 0.8: {n1}/{n0}, {round(100 - (n1/n0 * 100), 4)}%")return n_df@staticmethoddef filter_short_seq_len(df, thr_len=20):"""过滤序列长度角度的蛋白质,Multimer中只要存在1条,即过滤"""n0 = len(df)df_seq = df["seq"]flags = []for item_str in df_seq:is_short = Falseitems = item_str.split(",")for item in items:if len(item) < thr_len:is_short = Truebreakif is_short:flags.append(False)else:flags.append(True)n_df = df.loc[flags]n1 = len(n_df)print(f"[Info] filter seq len < 20: {n1}/{n0}, {round(100 - (n1/n0 * 100), 4)}%")return n_df@staticmethoddef filter_experiment_method(df, method_list=("XD", "SN", "EM", "EC")):"""筛选实验条件,目前保留 ["XD", "SN", "EM", "EC"]"""n0 = len(df)experiment_method = df["experiment_method"]flags = []for ex_item in experiment_method:items = ex_item.split(";")is_save = Falsefor item in items:method = item.strip()sub_names = method.split(" ")sub_m = "".join([i[0].upper() for i in sub_names])if sub_m in method_list:is_save = Truebreakif is_save:flags.append(True)else:flags.append(False)n_df = df.loc[flags]n1 = len(n_df)print(f"[Info] filter experiment method (include XD|SN|EM|EC): "f"{n1}/{n0}, {round(100 - (n1/n0 * 100), 4)}%")return n_dfdef filer_pipeline(self, df, date):"""过滤的全部流程"""# 1. 时间筛选df = self.filter_release_date(df, date=date)# 2. 过滤单链df = self.filter_monomer(df)# 3. 过滤非蛋白df = self.filter_na(df)# 4. 分辨率 < 9Adf = self.filter_resolution(df)# 5. 单个氨基酸占比小于 80%df = self.filter_same_aa(df)# 6. 过滤链长 < 20df = self.filter_short_seq_len(df)# 7. 实验方法包括 X-ray Diffraction、Electron Microscopy、Solution NMR、Solid-state NMR、Electron Crystallographydf = self.filter_experiment_method(df)return dfdef process(self, csv_path, output_file, date_range):"""处理数据集"""assert os.path.isfile(csv_path) and output_file.endswith("csv")df = pd.read_csv(csv_path)df.info()# 复制列df = df[["pdb_id", "chain_id", "resolution", "release_date", "seq", "len", "mol", "experiment_method"]].copy()df.columns = ["pdb_id", "chain_id", "resolution", "release_date", "seq", "len","chain_type", "experiment_method"]# 对齐 chain_type 数据格式def func(x):if not isinstance(x, str):return "none"ct_item = ast.literal_eval(x)c_type_list = []for item in ct_item:c_type = item.strip()c_type_list.append(c_type)return ",".join(c_type_list)df["chain_type"] = df["chain_type"].apply(lambda x: func(x))new_df = self.filer_pipeline(df, date=date_range)  # 过滤流new_df = new_df.drop('experiment_method', axis=1)  # 去掉new_df.to_csv(output_file, index=False)# train_df = self.filer_pipeline(df, date=("2021-09-30", "2023-01-01"))  # 过滤流# train_df = train_df.drop('experiment_method', axis=1)# train_df.to_csv(os.path.join(output_dir, "train.csv"), index=False)# val_df = self.filer_pipeline(df, date=("2023-01-01", "2025-01-01"))  # 过滤流# val_df = val_df.drop('experiment_method', axis=1)# val_df.to_csv(os.path.join(output_dir, "val.csv"), index=False)print("[Info] over!")def main():parser = argparse.ArgumentParser()parser.add_argument("-i","--input-file",help="the input file of pdb database profile.",type=Path,required=True,)parser.add_argument("-o","--output-file",help="the output file of result csv.",type=Path,required=True)parser.add_argument("-b","--begin-date",help="the begin date of pdb db, i.e. 2021-09-30 .",type=str,required=True)parser.add_argument("-e","--end-date",help="the end date of pdb db, i.e. 2023-01-01 , default 2999-12-31 .",type=str,default="2999-12-31")args = parser.parse_args()input_file = str(args.input_file)output_file = str(args.output_file)begin_date = str(args.begin_date)end_date = str(args.end_date)date_range = (begin_date, end_date)assert os.path.isfile(input_file)dg = DatasetGenerator()# input_file = os.path.join(ROOT_DIR, "data", "pdb_base_info_202308.csv")# output_file = os.path.join(DATA_DIR, "dataset", "train.csv")# date_range = ("2021-09-30", "2023-01-01")# date_range = ("2023-01-01", "2025-01-01")  # valdg.process(input_file, output_file, date_range)if __name__ == '__main__':main()

参考

  • StackOverflow - Filtering Pandas DataFrames on dates
  • Ways to filter Pandas DataFrame by column values
  • pandas.DataFrame.sort_values
  • StackOverflow - Renaming column names in Pandas
  • Pandas: How to Create New DataFrame from Existing DataFrame
  • Export Pandas to CSV without Index & Header
  • StackOverflow - Delete a column from a Pandas DataFrame

这篇关于PDB Database - 高质量 RCSB PDB 蛋白质结构筛选与过滤的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/172968

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

MySQL 衍生表(Derived Tables)的使用

《MySQL衍生表(DerivedTables)的使用》本文主要介绍了MySQL衍生表(DerivedTables)的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录一、衍生表简介1.1 衍生表基本用法1.2 自定义列名1.3 衍生表的局限在SQL的查询语句select

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句

六个案例搞懂mysql间隙锁

《六个案例搞懂mysql间隙锁》MySQL中的间隙是指索引中两个索引键之间的空间,间隙锁用于防止范围查询期间的幻读,本文主要介绍了六个案例搞懂mysql间隙锁,具有一定的参考价值,感兴趣的可以了解一下... 目录概念解释间隙锁详解间隙锁触发条件间隙锁加锁规则案例演示案例一:唯一索引等值锁定存在的数据案例二:

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

MySQL 设置AUTO_INCREMENT 无效的问题解决

《MySQL设置AUTO_INCREMENT无效的问题解决》本文主要介绍了MySQL设置AUTO_INCREMENT无效的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录快速设置mysql的auto_increment参数一、修改 AUTO_INCREMENT 的值。