格密码学习笔记(七):密码学中的q相关格、简介SIS问题和LWE问题

2023-10-09 07:59

本文主要是介绍格密码学习笔记(七):密码学中的q相关格、简介SIS问题和LWE问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • Q Q Q-相关格
  • Ajtai提出的单向函数(SIS)
  • Regev提出的容错学习问题(LWE)
  • 详细规约证明讲解
  • 致谢

Q Q Q-相关格

密码学中通常使用符合以下2个性质的(随机)格 Λ \Lambda Λ构造具体方案:

  • Λ ⊆ Z d \Lambda \subseteq \mathbb{Z}^d ΛZd是一个整数格;
  • q Z d ⊆ Λ q \mathbb{Z}^d \subseteq \Lambda qZdΛ对小整数 q q q取模后呈现周期性。

定义( q q q-相关格, q q q-ary lattice) 如果格 Λ \Lambda Λ满足 q Z n ⊆ Λ ⊆ Z n q \mathbb{Z}^n \subseteq \Lambda \subseteq \mathbb{Z}^n qZnΛZn,则称 Λ \Lambda Λ是一个 q q q-相关格。

注:这里的“-ary”有“与…有关”的意思,如果翻译为“阶”感觉怪怪的,如果是 q q q-阶群,感觉群里得有 q q q个元素,但定义里又没有体现。

什么是 q q q-相关格?举2个例子,对于任意 A ∈ Z q n × d \bm{A} \in \mathbb{Z}_q^{n \times d} AZqn×d,有

  • Λ q ( A ) = { x ∣ x m o d q ∈ A ⊤ Z q n } ⊆ Z d \Lambda_q(\bm{A}) = \{ \bm{x} | \bm{x} ~ \mathrm{mod} ~q \in \bm{A}^\top \mathbb{Z}^n_q \} \subseteq \mathbb{Z}^d Λq(A)={xx mod qAZqn}Zd
  • Λ q ⊥ ( A ) = { x ∣ A x = 0 m o d q } ⊆ Z d \Lambda^\perp_q(\bm{A}) = \{ \bm{x} | \bm{Ax} = \bm{0} ~ \mathrm{mod} ~ q \} \subseteq \mathbb{Z}^d Λq(A)={xAx=0 mod q}Zd

定理 对于任意格 Λ \Lambda Λ,以下3个 q q q-相关格判断条件是等价的:

  • q Z d ⊆ Λ ⊆ Z d q \mathbb{Z}^d \subseteq \Lambda \subseteq \mathbb{Z}^d qZdΛZd
  • 存在某些 A \bm{A} A满足 Λ = Λ q ( A ) \Lambda = \Lambda_q(\bm{A}) Λ=Λq(A)
  • 存在某些 A \bm{A} A满足 Λ = Λ q ⊥ ( A ) \Lambda = \Lambda^\perp_q(\bm{A}) Λ=Λq(A)

注意: 对于同一个 A \bm{A} A,格 Λ q ( A ) \Lambda_q(\bm{A}) Λq(A)和格 Λ q ⊥ ( A ) \Lambda^\perp_q(\bm{A}) Λq(A)是不同的。而对于一个 A ∈ Z q n × d \bm{A} \in \mathbb{Z}^{n \times d}_q AZqn×d,存在 A ′ ∈ Z q k × d \bm{A}' \in \mathbb{Z}^{k \times d}_q AZqk×d,使得 Λ q ( A ) = Λ q ⊥ ( A ′ ) \Lambda_q(\bm{A}) = \Lambda^\perp_q(\bm{A}') Λq(A)=Λq(A)。反过来亦如此。

对于同一个 A \bm{A} A Λ q \Lambda_q Λq Λ q ⊥ \Lambda_q^\perp Λq存在放缩对偶关系,即

  • Λ q ( A ) ∨ = 1 q Λ q ⊥ ( A ) \Lambda_q(\bm{A})^\vee = \frac{1}{q} \Lambda^\perp_q(\bm{A}) Λq(A)=q1Λq(A)
  • Λ q ⊥ ( A ) ∨ = 1 q Λ q ( A ) \Lambda^\perp_q(\bm{A})^\vee = \frac{1}{q} \Lambda_q(\bm{A}) Λq(A)=q1Λq(A)

Ajtai提出的单向函数(SIS)

Ajtai在1996年提出了基于 q q q相关随机格的单向函数(One-Way Function,OWF),并给出了安全性证明。这里的SIS是Short Integer Solution的缩写。该OWF构造如下图。在这里插入图片描述
定理 对于 m > n l g q m > n ~ \mathrm{lg} ~ q m>n lg q,若SIVP问题在最差情况下依旧是困难的,那么 f A ( x ) = A x m o d q f_{\bm{A}}(\bm{x}) = \bm{Ax} ~ \mathrm{mod} ~ q fA(x)=Ax mod q是单向函数。

这里简要给出抗碰撞单向的证明思路,后续公开课Daniele Micciancio教授有给出详细证明。

  • f A ( x ) = A x m o d q f_{\bm{A}}(\bm{x}) = \bm{Ax} ~ \mathrm{mod} ~ q fA(x)=Ax mod q,这里的 x \bm{x} x是一个短向量,即一个二进制向量;
  • f A f_{\bm{A}} fA q q q相关矩阵 Λ q ⊥ ( A ) \Lambda^\perp_q(\bm{A}) Λq(A),注意: ∀ v ∈ Λ q ⊥ ( A ) \forall \bm{v} \in \Lambda^\perp_q(\bm{A}) vΛq(A),有 f A ( v ) = 0 m o d q f_{\bm{A}}(\bm{v}) = \bm{0} ~ \mathrm{mod} ~ q fA(v)=0 mod q
  • 寻找碰撞 ( ( x , y ) s.t.  f A ( x ) = f A ( y ) ) \big( (\bm{x}, \bm{y}) ~ \text{s.t.} ~ f_{\bm{A}}(\bm{x}) = f_{\bm{A}}(\bm{y}) \big) ((x,y) s.t. fA(x)=fA(y))等价于寻找一个短向量 ( v = x − y ) ∈ Λ q ⊥ ( A ) ( \bm{v} = \bm{x} - \bm{y} ) \in \Lambda^\perp_q(\bm{A}) (v=xy)Λq(A),这里相当于求解了 Λ q ⊥ ( A ) \Lambda^\perp_q(\bm{A}) Λq(A)的SVP / SIVP问题;
  • f A ( x ) f_{\bm{A}}(\bm{x}) fA(x)求逆相当于求解伴随译码格式下的CVP问题,CVP问题的输入为 Λ q ⊥ ( A ) \Lambda^\perp_q(\bm{A}) Λq(A) t ∈ x + Λ q ⊥ ( A ) \bm{t} \in \bm{x} + \Lambda^\perp_q(\bm{A}) tx+Λq(A),伴随译码的定义可以翻阅《格密码学习笔记(六):格中模运算》。即已知 f A ( x ) f_{\bm{A}}(\bm{x}) fA(x),对其求逆得到一个长向量 t \bm{t} t t \bm{t} t x \bm{x} x Λ q ⊥ ( A ) \Lambda^\perp_q(\bm{A}) Λq(A)中对应同一个陪集,找到 x \bm{x} x,则 t − x \bm{t} - \bm{x} tx即CVP问题的格点解;
  • f A f_{\bm{A}} fA是一个压缩函数,那么 x \bm{x} x的长度需要大于 1 2 λ 1 ( Λ q ⊥ ( A ) ) \frac{1}{2}\lambda_1(\Lambda^\perp_q(\bm{A})) 21λ1(Λq(A))(这块个人不怎么理解)。

注意, S I S ≡ Approximate  A D D \mathsf{SIS} \equiv \text{Approximate} ~ \mathsf{ADD} SISApproximate ADD(绝对距离解码)。

Regev提出的容错学习问题(LWE)

Regev在2005年提出Learning With Errors(LWE)。Learning(学习) 这个词常见于机器学习中,一个完整的机器学习方法包括模型学习算法两部分,这里的“学习”可以理解成“figure out”,即求解出问题的解(从中学到某种知识)。LWE问题定义如下图。

在这里插入图片描述

LWE与SIS看起来有点不一样,但某种程度上这两者之间是对偶关系。在LWE问题中,输入和错误向量 e \bm{e} e比SIS的向量短得多,得到的函数是单射的,安全性证明难度更大。

定理 若SIVP问题在最坏情况下是困难的,则函数 g A ( s , e ) g_{\bm{A}}(\bm{s}, \bm{e}) gA(s,e)在多数情况下难以求逆。

  • 如果 e = 0 \bm{e} = \bm{0} e=0,那么 A s + e = A s ∈ Λ ( A ⊤ ) \bm{As} + \bm{e} = \bm{As} \in \Lambda(\bm{A}^\top) As+e=AsΛ(A),这里的转置请往上回翻 Λ q ( A ) \Lambda_q(\bm{A}) Λq(A)的定义;
  • e ≠ 0 \bm{e} \neq \bm{0} e=0,则相当于求解 q q q相关随机格 Λ ( A ⊤ ) \Lambda(\bm{A}^\top) Λ(A)和随机向量 t = A s + e \bm{t} = \bm{As} + \bm{e} t=As+e的CVP问题(注意这里没有SIS中的伴随译码形式,所以某种程度上与SIS之间存在对偶关系);
  • 一般情况下, e \bm{e} e的长度小于 1 2 λ 1 ( Λ ( A ⊤ ) ) \frac{1}{2}\lambda_1\big(\Lambda(\bm{A}^\top)\big) 21λ1(Λ(A)),且 e \bm{e} e是唯一确定的。

注意, L W E ≡ Approximate  B D D \mathsf{LWE} \equiv \text{Approximate} ~ \mathsf{BDD} LWEApproximate BDD(有界距离解码)。

详细规约证明讲解

推荐看Steven Yue大佬写的知乎文章(收录于稀有气体专栏)。

致谢

  • Simons格密码公开课官网
    Mathematics of Lattices - Simons Institute for the Theory of Computing
  • 哔哩哔哩中英双语视频(字幕组:重庆大学大数据与软件学院 后量子密码研究小组)
    【中英字幕】Simons格密码讲座第1讲:格的数学定义_哔哩哔哩_bilibili
  • 其它格密码讲解课程和博文
    Lattice学习笔记04:SIS与LWE问题
    公开学习资料的无私奉献者

这篇关于格密码学习笔记(七):密码学中的q相关格、简介SIS问题和LWE问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/171462

相关文章

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

CentOS和Ubuntu系统使用shell脚本创建用户和设置密码

《CentOS和Ubuntu系统使用shell脚本创建用户和设置密码》在Linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设置密码,本文写了一个shell... 在linux系统中,你可以使用useradd命令来创建新用户,使用echo和chpasswd命令来设

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

Maven中引入 springboot 相关依赖的方式(最新推荐)

《Maven中引入springboot相关依赖的方式(最新推荐)》:本文主要介绍Maven中引入springboot相关依赖的方式(最新推荐),本文给大家介绍的非常详细,对大家的学习或工作具有... 目录Maven中引入 springboot 相关依赖的方式1. 不使用版本管理(不推荐)2、使用版本管理(推

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen