灰度共生矩阵 Gray-Level Co-occurrence Matrix(GLCM)原理(一)

2023-10-09 01:59

本文主要是介绍灰度共生矩阵 Gray-Level Co-occurrence Matrix(GLCM)原理(一),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

重要概念

GLCM属性

1. 该矩阵是方形的,即N*N大小,一般为8*8, 16*16,32*32

2.它的行数和列数与图像的量化级别相同。

3. 该矩阵沿对角线对称。

4. offset位移,距离 ,定义为[row_offset, col_offset]

如何产生对称的共生矩阵GLCM图例说明

水平方向共生矩阵

垂直方向共生矩阵

归一化公式

产生对称的共生矩阵GLCM总结

官方说明


重要概念

neighbour pixel: 共生点
ref pixel:参考点,基准点

灰度共生矩阵(GLCM):是一种统计表格,不是一幅图片

GLCM属性

1. 该矩阵是方形的,即N*N大小,一般为8*8, 16*16,32*32

2.它的行数和列数与图像的量化级别相同。

如果图片是8位深度,即灰度范围[0,255]共2^8=256个级别(level),那么行数与列数都是256;但是这样的矩阵计算量太大,一般会缩放至2^3=82^4=16个级别,也有2^5=32个级别的。

3. 该矩阵沿对角线对称。

如果共生点对(0,2)在图片中出现了一次【往东边计算】,那么反过来,往西边计算,共生点对(2,0)在图片中也出现一次。

这样做的目的是:最东边的元素没有右边的共生点可以计算,而最西边的元素没有左边的共生点,让共生矩阵对称后就不会有此问题。

换句话说,就是从东往西计算一次,再从西往东计算一次。【参考offset位移,距离 ,定义为[row_offset, col_offset]】

以下面的原始图为例,以共生点对(0,2)为例,从东往西(0,2)计算出现一次,从西往东(2,0)计算也出现一次,这时不用管谁在左谁在右,只要它们之间的距离是1就行。即水平方向它们出现两次。

问:如何让共生矩阵对称?

答:把产生的统计矩阵 与 它的转置矩阵(transpose)相加,即得到对称的共生矩阵。

4. offset位移,距离 ,定义为[row_offset, col_offset]

此处借用MATLAB的图。

坐标系如下,注意方括号里的值代表的是[row, col]【即(y, x)】上对应的位移,与OpenCV的图片坐标表示是一样的。

如果要产生对称的GLCM,需要计算八个方向【东&西、南&北、东北&西南、西北&东南】;

不对称的GLCM,只需计算四个方向【东、东北、北、西北】

如何产生对称的共生矩阵GLCM图例说明

原始图:

水平方向共生矩阵

Framework matrix 框架矩阵(组合矩阵):

东边(右边)方向的共生点对(0,0) (0,1) (2,2)【(参考点,共生点)】【注意:(2,2)出现了三次】

参考点东边E(1,0)的共生统计结果如下,记为原矩阵 O :

将上面矩阵转置得到下面的转置矩阵T

原矩阵 O 与转置矩阵 T 相加,得到水平方向的共生矩阵,其中共生点对之间的距离为1。

这个共生矩阵有效点对的次数为4+2+1+2+4+1+6+1+1+2=24,而共生点对(2,2)共出现了6次。

那么共生点对(2,2)出现的概率为6/24=1/4 即25%, 共生点对(2,3)的出现概率为1/24=4.2%.

最后一步:归一化

每个格子的值(Value)除以总数(sum)就得到概率矩阵。

上面水平方向的共生矩阵中总数为24,归一化后即得到如下矩阵

垂直方向共生矩阵

Count(south) matrix + Transpose(north) matrix = Symmetrical(vertical) matrix

参考点南边(0,1)的矩阵 + 转置矩阵 = 垂直方向上对称的共生矩阵

概率矩阵:垂直方向上的对称共生矩阵归一化之后的结果如下:

 

归一化公式

产生对称的共生矩阵GLCM总结

产生对称的共生矩阵的步骤:

1. Create a framework matrix taking into account the bit depth【考虑图像位深、灰度级别,建立一个框架矩阵】
2. Decide on the spatial relation between the reference and neighbour pixel【确定参考像素与共生像素的空间关系,如水平方向--东、垂直方向 -- 北、对角线方向--东北、对角线方向--东南等】【注意:只考虑一个方向】
3. Count the occurrences and fill in the framework matrix【计算点对的出现次数,并填入矩阵中,得到原矩阵 O】
4. Add the matrix to its transpose to make it symmetrical【将原矩阵 O 的转置矩阵 T 加到 原矩阵 O 中,产生对称的共生矩阵】
5. Normalize the matrix to conceptually turn it into probabilities.【归一化,转为概率矩阵】

官方说明


1、https://www.mathworks.com/help/images/ref/graycomatrix.html   

【灰度共生矩阵原理,步距、方向原理等说明,及MATLAB代码】
2、https://prism.ucalgary.ca/handle/1880/51900   

【一本入门教程,可以下载为pdf小册子,里面有详细的范例《GLCM Texture: A Tutorial v. 3.0 March 2017》】

3、Haralick, R.M., K. Shanmugan, and I. Dinstein, "Textural Features for Image Classification", IEEE Transactions on Systems, Man, and Cybernetics, Vol. SMC-3, 1973, pp. 610-621.  【方法提出者】
 

这篇关于灰度共生矩阵 Gray-Level Co-occurrence Matrix(GLCM)原理(一)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/169551

相关文章

ShardingProxy读写分离之原理、配置与实践过程

《ShardingProxy读写分离之原理、配置与实践过程》ShardingProxy是ApacheShardingSphere的数据库中间件,通过三层架构实现读写分离,解决高并发场景下数据库性能瓶... 目录一、ShardingProxy技术定位与读写分离核心价值1.1 技术定位1.2 读写分离核心价值二

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深入浅出Spring中的@Autowired自动注入的工作原理及实践应用

《深入浅出Spring中的@Autowired自动注入的工作原理及实践应用》在Spring框架的学习旅程中,@Autowired无疑是一个高频出现却又让初学者头疼的注解,它看似简单,却蕴含着Sprin... 目录深入浅出Spring中的@Autowired:自动注入的奥秘什么是依赖注入?@Autowired

从原理到实战解析Java Stream 的并行流性能优化

《从原理到实战解析JavaStream的并行流性能优化》本文给大家介绍JavaStream的并行流性能优化:从原理到实战的全攻略,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的... 目录一、并行流的核心原理与适用场景二、性能优化的核心策略1. 合理设置并行度:打破默认阈值2. 避免装箱

Python中的filter() 函数的工作原理及应用技巧

《Python中的filter()函数的工作原理及应用技巧》Python的filter()函数用于筛选序列元素,返回迭代器,适合函数式编程,相比列表推导式,内存更优,尤其适用于大数据集,结合lamb... 目录前言一、基本概念基本语法二、使用方式1. 使用 lambda 函数2. 使用普通函数3. 使用 N

MyBatis-Plus 与 Spring Boot 集成原理实战示例

《MyBatis-Plus与SpringBoot集成原理实战示例》MyBatis-Plus通过自动配置与核心组件集成SpringBoot实现零配置,提供分页、逻辑删除等插件化功能,增强MyBa... 目录 一、MyBATis-Plus 简介 二、集成方式(Spring Boot)1. 引入依赖 三、核心机制

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

Linux中的HTTPS协议原理分析

《Linux中的HTTPS协议原理分析》文章解释了HTTPS的必要性:HTTP明文传输易被篡改和劫持,HTTPS通过非对称加密协商对称密钥、CA证书认证和混合加密机制,有效防范中间人攻击,保障通信安全... 目录一、什么是加密和解密?二、为什么需要加密?三、常见的加密方式3.1 对称加密3.2非对称加密四、

setsid 命令工作原理和使用案例介绍

《setsid命令工作原理和使用案例介绍》setsid命令在Linux中创建独立会话,使进程脱离终端运行,适用于守护进程和后台任务,通过重定向输出和确保权限,可有效管理长时间运行的进程,本文给大家介... 目录setsid 命令介绍和使用案例基本介绍基本语法主要特点命令参数使用案例1. 在后台运行命令2.

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、