数字IC前端学习笔记:数字乘法器的优化设计(Dadda Tree乘法器)

本文主要是介绍数字IC前端学习笔记:数字乘法器的优化设计(Dadda Tree乘法器),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关阅读

数字IC前端icon-default.png?t=N7T8https://blog.csdn.net/weixin_45791458/category_12173698.html?spm=1001.2014.3001.5482


         华莱士树仍然是一种比较规则的结构(这使得可以方便地生成树的结构),这导致了它所使用的全加器和半加器个数不是最少的,Dadda提出了一种改良华莱士树的方式,这后来被称为Dadda Tree。他使用了最少数量的全加器以及半加器来重构了树,且能保证树的级数(深度)不变,这就在节省硬件资源的情况下保证了相似的性能。

        达达树的压缩策略如下算法所示。

  1. d_{1}=2d_{j+1}=[1.5d_{j}],其中中括号表示向下取整。找到最大的j,使得至少一列部分积的深度大于d_{j}
  2. 使用全加器或半加器去压缩那些深度超过d_{j}的列,使得这些列的深度不大于d_{j},这里要考虑到来自低位的压缩进位以及尽可能少地使用器件。
  3. 重复步骤1和2直到部分积变成只有两行或者说j=1

        根据这个算法,可以得到dadda的树的结构,如图1所示。图中的斜杠/代表一个全加器,连接的分别是右上角的本位和以及左下角给高位的进位,带反斜杠\的/表示是半加器。

        具体的压缩过程为,首先按照规则找到最大的j为3,其中第4列(从右到左)有4列部分积,所以使用一个半加器压缩,第5列的部分积加上第4列的进位,一共有4列部分积,所以也需用一个半加器压缩。然后接着重复步骤1,找到最大的j为2,其中第3列有3列部分积,所以使用一个半加器压缩,第4列因为第3列的进位,所以有4列部分积,因此需要全加器压缩,第5、6列同理需要使用全加器压缩,得到最后2行部分积。最后使用向量合并器(可以是传播进位加法器,也可以是超前进位加法器)将部分积累加。

图1 dadda树乘法器的覆盖过程

        具体的Verilog代码实现见附录,Modelsim软件仿真截图如图2所示。使用Synopsis的综合工具Design Compiler综合的结果如图3所示,综合使用了0.13μm工艺库

图2 dadda树乘法器仿真结果

​​​​​​​​​​​​​​​​​​​​图3 dadda树乘法器综合结果

        在Design Compiler中使用report_timing命令,可以得到关键路径的延迟,如图4所示,可以看出延迟有1.54ns,略差于华莱士树,这是因为达达树最后的向量合并器的数据位宽较大。

 ​​​​​​​图4 dadda树乘法器关键路径报告

        在Design Compiler中使用report_area命令,报告所设计电路的面积占用情况,如图5所示,可以看到这个面积优于华莱士树乘法器,不考虑最后的向量合并器,达达树仅仅使用了三个全加器和三个半加器就完成了四位数据的部分积累加,相比之下,华莱士树使用了五个全加器和三个半加器,当数据位宽增加时,华莱士树乘法器对于加法器的需求增加也比达达树快,因此达达树是华莱士树的优化版,但达达树不具有华莱士树的规则的结构,设计起来会比较消耗时间和人力。

图5 dadda树乘法器面积报告

        dadda树乘法器的Verilog代码如下所示。

module Dadda_Multiplier (input      [3:0]    A      ,input      [3:0]    B      ,output  [7:0]    Sum
);wire [3:0] partial_product [3:0];  wire [1:0] W_level1_c,W_level1_carry;wire [3:0] W_level2_c,W_level2_carry;wire [6:0] W_level3[0:1];//产生部分积assign partial_product[0]=B[0]?A:0;assign partial_product[1]=B[1]?A:0;assign partial_product[2]=B[2]?A:0;assign partial_product[3]=B[3]?A:0;// level1Adder_half adder_half_u1 (.Mult1    (partial_product[2][1]),.Mult2    (partial_product[3][0]),.Res    (W_level1_c[0]),.Carry(W_level1_carry[0])); Adder_half adder_half_u2 (.Mult1    (partial_product[3][1]),.Mult2    (partial_product[2][2]),.Res    (W_level1_c[1]),.Carry(W_level1_carry[1]));// level2Adder_half adder_half_u3 (.Mult1    (partial_product[1][1]),.Mult2    (partial_product[2][0]),.Res    (W_level2_c[0]    ),.Carry(W_level2_carry[0]));Adder adder_u1 (.Mult1     (partial_product[0][3]),.Mult2     (partial_product[1][2]),.I_carry (W_level1_c[0]          ),.Res     (W_level2_c[1]          ),.Carry (W_level2_carry[1]      ));Adder adder_u2 (.Mult1     (partial_product[1][3]),.Mult2     (W_level1_c[1]          ),.I_carry (W_level1_carry[0]      ),.Res     (W_level2_c[2]          ),.Carry (W_level2_carry[2]      ));Adder adder_u3 (.Mult1     (partial_product[2][3]),.Mult2     (partial_product[3][2]),.I_carry (W_level1_carry[1]       ),.Res     (W_level2_c[3]          ),.Carry (W_level2_carry[3]      ));assign W_level3[0] = {partial_product[3][3], W_level2_c[3:1],     partial_product[0][2:0]};assign W_level3[1] = {W_level2_carry[3:0], W_level2_c[0], partial_product[1][0], 1'b0};assign Sum     = W_level3[0] + W_level3[1];endmodule

这篇关于数字IC前端学习笔记:数字乘法器的优化设计(Dadda Tree乘法器)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/169235

相关文章

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

从入门到精通详解LangChain加载HTML内容的全攻略

《从入门到精通详解LangChain加载HTML内容的全攻略》这篇文章主要为大家详细介绍了如何用LangChain优雅地处理HTML内容,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录引言:当大语言模型遇见html一、HTML加载器为什么需要专门的HTML加载器核心加载器对比表二

MySQL深分页进行性能优化的常见方法

《MySQL深分页进行性能优化的常见方法》在Web应用中,分页查询是数据库操作中的常见需求,然而,在面对大型数据集时,深分页(deeppagination)却成为了性能优化的一个挑战,在本文中,我们将... 目录引言:深分页,真的只是“翻页慢”那么简单吗?一、背景介绍二、深分页的性能问题三、业务场景分析四、

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

前端如何通过nginx访问本地端口

《前端如何通过nginx访问本地端口》:本文主要介绍前端如何通过nginx访问本地端口的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、nginx安装1、下载(1)下载地址(2)系统选择(3)版本选择2、安装部署(1)解压(2)配置文件修改(3)启动(4)

HTML中meta标签的常见使用案例(示例详解)

《HTML中meta标签的常见使用案例(示例详解)》HTMLmeta标签用于提供文档元数据,涵盖字符编码、SEO优化、社交媒体集成、移动设备适配、浏览器控制及安全隐私设置,优化页面显示与搜索引擎索引... 目录html中meta标签的常见使用案例一、基础功能二、搜索引擎优化(seo)三、社交媒体集成四、移动

HTML input 标签示例详解

《HTMLinput标签示例详解》input标签主要用于接收用户的输入,随type属性值的不同,变换其具体功能,本文通过实例图文并茂的形式给大家介绍HTMLinput标签,感兴趣的朋友一... 目录通用属性输入框单行文本输入框 text密码输入框 password数字输入框 number电子邮件输入编程框

HTML img标签和超链接标签详细介绍

《HTMLimg标签和超链接标签详细介绍》:本文主要介绍了HTML中img标签的使用,包括src属性(指定图片路径)、相对/绝对路径区别、alt替代文本、title提示、宽高控制及边框设置等,详细内容请阅读本文,希望能对你有所帮助... 目录img 标签src 属性alt 属性title 属性width/h