TcpConnection的读写操作【深度剖析】

2023-10-04 08:15

本文主要是介绍TcpConnection的读写操作【深度剖析】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 前言
  • 一、TcpConnection的读
  • 二、TcpConnection的写
  • 三、TcpConnection的关闭


前言

今天总结TcpConnection类的读写事件。

一、TcpConnection的读

当Poller检测到套接字的Channel处于可读状态时,会调用Channel的回调函数,回调函数中根据不同激活原因调用不同的函数,这些函数都由TcpConnection在创建Channel之初提供,当可读时,调用TcpConnection的可读函数handleRead,而在这个函数中,读缓冲区就会从内核的tcp缓冲区读取数据。


void TcpConnection::handleRead(Timestamp receiveTime)
{int savedErrno = 0;ssize_t n = inputBuffer_.readFd(channel_->fd(), &savedErrno);if (n > 0){// 已建立连接的用户,有可读事件发生了,调用用户传入的回调操作onMessagemessageCallback_(shared_from_this(), &inputBuffer_, receiveTime);}else if (n == 0){handleClose();}else{errno = savedErrno;LOG_ERROR("TcpConnection::handleRead");handleError();}
}

TcpConnection::handleRead( )函数首先调用Buffer_.readFd(channel_->fd(), &saveErrno),该函数底层调用Linux的函数readv( ),将Tcp接收缓冲区数据拷贝到用户定义的缓冲区中(inputBuffer_)。如果在读取拷贝的过程中发生了什么错误,这个错误信息就会保存在savedErrno中。
对于缓冲区 Buffer::readFd()函数之前的文章已经剖析过了。

二、TcpConnection的写

TcpConnection::send() 方法是用户调用发送接口,会调用TcpConnection::sendInLoop() 方法来处理具体的发送操作。如果在当前线程直接发送,就会调用 sendInLoop() 方法处理,否则需要把发送任务加入到事件循环中,等待对应的线程处理。

//给用户提供的 发送接口
void TcpConnection::send(const std::string &buf)
{if (state_ == kConnected){if (loop_->isInLoopThread()){// 判断当前的线程 是不是在对应的线程里面// 有一些情况sendInLoop(buf.c_str(), buf.size());}else{loop_->runInLoop(std::bind(&TcpConnection::sendInLoop,this,buf.c_str(),buf.size()));}}
}

在TcpConnection::sendInLoop() 方法的实现中接通过系统调用 write() 发送数据,如果有剩余未发送的数据,则会将数据添加到发送缓冲区中,并注册 channel 的可写事件,等待事件循环通知空闲后再进行发送。


/*** 发送数据  应用写的快, 而内核发送数据慢, 需要把待发送数据写入缓冲区,*  而且设置了水位回调*/ 
void TcpConnection::sendInLoop(const void* data, size_t len)
{ssize_t nwrote = 0;// remaining是没发送完的数据size_t remaining = len;bool faultError = false;// 之前调用过该connection的shutdown,不能再进行发送了if (state_ == kDisconnected){LOG_ERROR("disconnected, give up writing!");return;}// 表示channel_第一次开始写数据,而且缓冲区没有待发送数据if (!channel_->isWriting() && outputBuffer_.readableBytes() == 0){// 返回的是具体发送的 数据nwrote = ::write(channel_->fd(), data, len);if (nwrote >= 0){remaining = len - nwrote;// 如果放松完了 ,并且注册了 发送完回调函数if (remaining == 0 && writeCompleteCallback_){// 既然在这里数据全部发送完成,就不用再给channel设置epollout事件了loop_->queueInLoop(std::bind(writeCompleteCallback_, shared_from_this()));}}else // nwrote < 0{nwrote = 0;if (errno != EWOULDBLOCK){LOG_ERROR("TcpConnection::sendInLoop");if (errno == EPIPE || errno == ECONNRESET) // SIGPIPE  RESET{faultError = true;}}}}// 说明当前这一次write,并没有把数据全部发送出去,// 剩余的数据需要保存到缓冲区当中,然后给channel// 注册epollout事件,poller发现tcp的发送缓冲区有空间,// 因为是lt模式  如果缓存区空余 就会不断地提醒// 会通知相应的sock-channel,调用writeCallback_回调方法也就是hanldwrite方法// 也就是调用TcpConnection::handleWrite方法,把发送缓冲区中的数据全部发送完成if (!faultError && remaining > 0) {// 目前发送缓冲区剩余的待发送数据的长度size_t oldLen = outputBuffer_.readableBytes();if (oldLen + remaining >= highWaterMark_&& oldLen < highWaterMark_&& highWaterMarkCallback_){loop_->queueInLoop(std::bind(highWaterMarkCallback_, shared_from_this(), oldLen+remaining));}// 数据添加到缓冲区里面outputBuffer_.append((char*)data + nwrote, remaining);if (!channel_->isWriting()){// 这里一定要注册channel的写事件,否则poller不会给channel通知epolloutchannel_->enableWriting(); }}
}

发送缓冲区中有数据时,TcpConnection::handleWrite() 方法会被调用来处理具体的发送操作。在该方法中,首先会判断 channel 是否可写,如果可写则通过系统调用 writeFd() 将发送缓冲区中的数据写入到套接字中。如果写入成功,就会从发送缓冲区中删除已经发送的数据,并判断是否还有剩余数据,如果没有,则禁用 channel 的写事件,并执行可写回调函数。如果还有剩余数据,则会继续等待事件循环通知空闲后再次进行发送。


// 对outputBuffer_ 进行发送
void TcpConnection::handleWrite()
{if (channel_->isWriting()){int savedErrno = 0;ssize_t n = outputBuffer_.writeFd(channel_->fd(), &savedErrno);if (n > 0){// 有数据发送成功  n个数据已经处理过了 把readable 向右移outputBuffer_.retrieve(n);if (outputBuffer_.readableBytes() == 0){// 已经发送完成了 编程不可写   执行回调写完回调writeCompleteCallback_channel_->disableWriting();if (writeCompleteCallback_){// 唤醒loop_对应的thread线程,执行回调// 唤醒线程 执行写完之后的回调事件loop_->queueInLoop(std::bind(writeCompleteCallback_, shared_from_this()));}if (state_ == kDisconnecting){// 如果还有数据但是 就调用了 shutdown//   state_就变成了 == kDisconnecting// 但是 需要等待 数据传输完成 再调用shutdownInLoopshutdownInLoop();}}}else{LOG_ERROR("TcpConnection::handleWrite");}}else{LOG_ERROR("TcpConnection fd=%d is down, no more writing \n", channel_->fd());}
}

这里的细节问题就是如果想要关闭连接,那么通常是先关闭读端,等到将写缓冲区所有数据都写到tcp缓冲区后,再关闭写端,否则这些数据就不能发送给对端了

三、TcpConnection的关闭

需要关闭时候setState(kDisconnecting);把状态设置为kDisconnecting但是没有立即关闭,而是判断是否还有数据可写。

// 关闭连接
void TcpConnection::shutdown()
{if (state_ == kConnected){setState(kDisconnecting);loop_->runInLoop(std::bind(&TcpConnection::shutdownInLoop, this));}
}
void TcpConnection::shutdownInLoop()
{// 如果buffer还有数据,这个就是writing状态// 会一直发, 知道发完 然后监控到状态是kDisconnecting // 再次调用这个函数 ,就会关闭了// 保证数据发送完if (!channel_->isWriting()) // 说明outputBuffer中的数据已经全部发送完成{socket_->shutdownWrite(); // 关闭写端}
}

如果buffer还有数据,这个就是writing状态会一直被epoll提醒发送,直到发完 然后监控到状态是kDisconnecting 再次调用这个函数 ,就会关闭了
保证数据发送完。


// 对outputBuffer_ 进行发送
void TcpConnection::handleWrite()
{if (channel_->isWriting()){int savedErrno = 0;ssize_t n = outputBuffer_.writeFd(channel_->fd(), &savedErrno);if (n > 0){// 有数据发送成功  n个数据已经处理过了 把readable 向右移outputBuffer_.retrieve(n);if (outputBuffer_.readableBytes() == 0){// 已经发送完成了 编程不可写   执行回调写完回调writeCompleteCallback_channel_->disableWriting();if (writeCompleteCallback_){// 唤醒loop_对应的thread线程,执行回调// 唤醒线程 执行写完之后的回调事件loop_->queueInLoop(std::bind(writeCompleteCallback_, shared_from_this()));}if (state_ == kDisconnecting){// 如果还有数据但是 就调用了 shutdown//   state_就变成了 == kDisconnecting// 但是 需要等待 数据传输完成 再调用shutdownInLoopshutdownInLoop();}}}else{LOG_ERROR("TcpConnection::handleWrite");}}else{LOG_ERROR("TcpConnection fd=%d is down, no more writing \n", channel_->fd());}
}

这篇关于TcpConnection的读写操作【深度剖析】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1669

相关文章

深度解析Python中递归下降解析器的原理与实现

《深度解析Python中递归下降解析器的原理与实现》在编译器设计、配置文件处理和数据转换领域,递归下降解析器是最常用且最直观的解析技术,本文将详细介绍递归下降解析器的原理与实现,感兴趣的小伙伴可以跟随... 目录引言:解析器的核心价值一、递归下降解析器基础1.1 核心概念解析1.2 基本架构二、简单算术表达

深度解析Java @Serial 注解及常见错误案例

《深度解析Java@Serial注解及常见错误案例》Java14引入@Serial注解,用于编译时校验序列化成员,替代传统方式解决运行时错误,适用于Serializable类的方法/字段,需注意签... 目录Java @Serial 注解深度解析1. 注解本质2. 核心作用(1) 主要用途(2) 适用位置3

Java MCP 的鉴权深度解析

《JavaMCP的鉴权深度解析》文章介绍JavaMCP鉴权的实现方式,指出客户端可通过queryString、header或env传递鉴权信息,服务器端支持工具单独鉴权、过滤器集中鉴权及启动时鉴权... 目录一、MCP Client 侧(负责传递,比较简单)(1)常见的 mcpServers json 配置

Maven中生命周期深度解析与实战指南

《Maven中生命周期深度解析与实战指南》这篇文章主要为大家详细介绍了Maven生命周期实战指南,包含核心概念、阶段详解、SpringBoot特化场景及企业级实践建议,希望对大家有一定的帮助... 目录一、Maven 生命周期哲学二、default生命周期核心阶段详解(高频使用)三、clean生命周期核心阶

深度剖析SpringBoot日志性能提升的原因与解决

《深度剖析SpringBoot日志性能提升的原因与解决》日志记录本该是辅助工具,却为何成了性能瓶颈,SpringBoot如何用代码彻底破解日志导致的高延迟问题,感兴趣的小伙伴可以跟随小编一起学习一下... 目录前言第一章:日志性能陷阱的底层原理1.1 日志级别的“双刃剑”效应1.2 同步日志的“吞吐量杀手”

深度解析Python yfinance的核心功能和高级用法

《深度解析Pythonyfinance的核心功能和高级用法》yfinance是一个功能强大且易于使用的Python库,用于从YahooFinance获取金融数据,本教程将深入探讨yfinance的核... 目录yfinance 深度解析教程 (python)1. 简介与安装1.1 什么是 yfinance?

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1