JAVA练习百题之求矩阵对角线之和

2023-10-08 11:28

本文主要是介绍JAVA练习百题之求矩阵对角线之和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目:求一个3*3矩阵对角线元素之和

程序分析

求一个3x3矩阵的对角线元素之和,我们需要将矩阵的左上到右下以及左下到右上两条对角线上的元素相加。

一个3x3矩阵如下所示:

1  2  3
4  5  6
7  8  9

左上到右下的对角线元素和为1 + 5 + 9 = 15,左下到右上的对角线元素和为7 + 5 + 3 = 15。

下面我们将使用三种不同的方法来实现这个任务,并分析它们的优缺点。

方法一:使用嵌套循环遍历矩阵

解题思路

我们可以使用嵌套循环遍历矩阵的元素,将左上到右下和左下到右上两条对角线上的元素相加。

实现代码

public class Main {public static void main(String[] args) {int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};int sum1 = 0, sum2 = 0;for (int i = 0; i < matrix.length; i++) {sum1 += matrix[i][i];            // 左上到右下的对角线sum2 += matrix[i][matrix.length - 1 - i]; // 左下到右上的对角线}System.out.println("Sum of diagonal elements (left to right): " + sum1);System.out.println("Sum of diagonal elements (right to left): " + sum2);}
}

优缺点

优点:

  • 简单易懂,容易实现。
  • 对于小规模矩阵,性能良好。

缺点:

  • 随着矩阵大小的增加,性能可能下降,时间复杂度为O(n)。

方法二:直接计算

解题思路

我们可以直接计算对角线元素之和,而不需要遍历整个矩阵。对于一个3x3矩阵,左上到右下的对角线元素之和为matrix[0][0] + matrix[1][1] + matrix[2][2],左下到右上的对角线元素之和为matrix[2][0] + matrix[1][1] + matrix[0][2]

实现代码

public class Main {public static void main(String[] args) {int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};int sum1 = matrix[0][0] + matrix[1][1] + matrix[2][2]; // 左上到右下的对角线int sum2 = matrix[2][0] + matrix[1][1] + matrix[0][2]; // 左下到右上的对角线System.out.println("Sum of diagonal elements (left to right): " + sum1);System.out.println("Sum of diagonal elements (right to left): " + sum2);}
}

优缺点

优点:

  • 直接计算,不需要遍历整个矩阵,性能较好。
  • 对于小规模矩阵,性能良好。

缺点:

  • 对于大规模矩阵,时间复杂度仍然为O(1),没有显著的性能提升。

方法三:使用循环

解题思路

我们可以使用循环来计算对角线元素之和,避免直接硬编码每个元素的位置。

实现代码

public class Main {public static void main(String[] args) {int[][] matrix = {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}};int sum1 = 0, sum2 = 0;for (int i = 0; i < matrix.length; i++) {sum1 += matrix[i][i];            // 左上到右下的对角线sum2 += matrix[i][matrix.length - 1 - i]; // 左下到右上的对角线}System.out.println("Sum of diagonal elements (left to right): " + sum1);System.out.println("Sum of diagonal elements (right to left): " + sum2);}
}

优缺点

优点:

  • 使用循环计算,不需要硬编码每个元素的位置,具有一定的灵活性。
  • 对于小规模矩阵,性能良好。

缺点:

  • 对于大规模矩阵,时间复杂度仍然为O(n)。

总结

对于小规模矩阵,三种方法的性能都较好,且实现都相对简单。方法一和方法三具有一定的灵活性,可以用于不同大小的矩阵,但时间复杂度为O(n)。方法二直接计算,性能也较好,但不具备灵活性。

综合考虑,如果只处理小规模矩阵,方法一或方法三都可以选择,取决于个人喜好。如果需要处理大规模矩阵,方法二是一个更好的选择,因为它的时间复杂度是常数级的,不受矩阵大小的影响。

这篇关于JAVA练习百题之求矩阵对角线之和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/164943

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

Java中的.close()举例详解

《Java中的.close()举例详解》.close()方法只适用于通过window.open()打开的弹出窗口,对于浏览器的主窗口,如果没有得到用户允许是不能关闭的,:本文主要介绍Java中的.... 目录当你遇到以下三种情况时,一定要记得使用 .close():用法作用举例如何判断代码中的 input

Spring Gateway动态路由实现方案

《SpringGateway动态路由实现方案》本文主要介绍了SpringGateway动态路由实现方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随... 目录前沿何为路由RouteDefinitionRouteLocator工作流程动态路由实现尾巴前沿S