学习笔记: `scipy.signal.find_peaks` 寻峰函数

2023-10-08 10:50

本文主要是介绍学习笔记: `scipy.signal.find_peaks` 寻峰函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

scipy.signal.find_peaks 寻峰函数


''' 寻峰
find_peaks: Find peaks inside a signal based on peak properties.
(function) def find_peaks(x: Any,height: Any | None = None,threshold: Any | None = None,distance: Any | None = None,prominence: Any | None = None,width: Any | None = None,wlen: Any | None = None,rel_height: float = 0.5,plateau_size: Any | None = None
) -> tuple[Any, dict]
在具有峰属性的信号中寻找峰值。该函数接受一个1-D数组,并通过简单比较相邻值来找到所有局部最大值。可选地,可以通过指定峰值属性的条件来选择这些峰值的子集。参数x: 峰信号 序列一个带有峰值的信号。height: 高 数字或ndarray或序列, 可选峰值的所需高度。一个数字,None,一个匹配x的数组或前者的2元序列(第一个元素总是被解释为最小值,第二个元素(如果提供)被解释为最大所需高度)。threshold: 阈值 数字或ndarray或序列, 可选峰值所需的阈值,即其相邻样本的垂直距离。一个数字,None,一个匹配x的数组或前者的2元序列(第一个元素总是被解释为最小值,第二个元素(如果提供)被解释为最大所需阈值)。distance: 距离 数字, 可选相邻峰值之间的所需最小水平距离(>= 1)。较小的峰值首先被删除,直到所有剩余的峰值都满足该条件。prominence: 显著性 数字或ndarray或序列, 可选峰值的所需显著性,即其相邻样本的垂直距离。一个数字,None,一个匹配x的数组或前者的2元序列(第一个元素总是被解释为最小值,第二个元素(如果提供)被解释为最大所需显著性)。width: 宽度 数字或ndarray或序列, 可选峰值的所需宽度,即其相邻样本的水平距离。一个数字,None,一个匹配x的数组或前者的2元序列(第一个元素总是被解释为最小值,第二个元素(如果提供)被解释为最大所需宽度)。wlen: 窗口长度 数字, 可选用于计算峰值宽度的窗口长度。默认值为宽度的1/10。rel_height: 相对高度 数字, 可选用于计算峰值宽度的相对高度。默认值为0.5。plateau_size: 平台大小 数字, 可选用于计算峰值宽度的平台大小。默认值为1。返回peaks: 峰值序列 ndarray满足所有给定条件的x中的峰值的索引。properties: 属性 字典包含返回的峰值的属性的字典,这些属性在计算指定条件的评估过程中作为中间结果计算出来:'peak_heights' 如果给出了height,则为x中每个峰值的高度。'left_thresholds', 'right_thresholds' 如果给出了threshold,则可以访问这些键,它们包含峰值到其相邻样本的垂直距离。'prominences', 'right_bases', 'left_bases' 如果给出了prominence,则可以访问这些键。请参阅peak_prominences以获取其内容的描述。'width_heights', 'left_ips', 'right_ips' 如果给出了width,则可以访问这些键。请参阅peak_widths以获取其内容的描述。'plateau_sizes', left_edges', 'right_edges' 如果给出了plateau_size,则可以访问这些键,并包含峰值边缘的索引(边缘仍然是平台的一部分)和计算出的平台大小。
Warns
PeakPropertyWarning若一个或多个峰值属性的条件无法满足,则会发出警告。(见`prominence`height`width`的警告)Warning该函数对于包含NaN的数据,可能会返回意外的结果。为了避免这种情况,应该删除或替换NaN。其他参见`find_peaks_cwt`使用小波变换查找峰值。`peak_prominences`直接计算峰值的显著性。`peak_widths`直接计算峰值的宽度。注意在这个函数的上下文中,峰值或局部最大值被定义为任何两个直接邻居的样本都具有较小振幅的样本。对于平坦的峰值(宽度大于一个样本的等幅),返回中间样本的索引(如果样本数是偶数,则向下取整)。对于噪声信号,峰值位置可能会偏离,因为噪声可能会改变局部最大值的位置。在这些情况下,考虑在搜索峰值之前对信号进行平滑,或者使用其他峰值查找和拟合方法(如find_peaks_cwt)。关于指定条件的一些附加说明:几乎所有的条件(不包括距离)都可以给出半开或闭区间,例如,1(1None)定义了半开区间[1,\infty],而(None1)定义了区间[-\infty,1]。 也可以指定开放间隔(NoneNone),它返回匹配属性而不排除峰值。边界总是包含在用于选择有效峰值的区间中的。对于几个条件,区间边界可以用与x匹配的形状数组指定,这样就可以根据样本位置动态地约束。条件是按以下方式计算的: plateau_size、height、threshold、distance、prominence、width。在大多数情况下,这个顺序是最快的,因为优先级高的条件可以用来排除峰值,从而减少计算量。虽然峰值中的索引保证至少相距distance个样本,但平坦峰的边缘可能比允许的距离更近。如果x很大或有很多个局部最大值(参见`prominence`),使用wlen来减少计算显著性或宽度的时间。Examples
#%% 为了演示这个函数的用法,我们使用SciPy提供的一个信号x(参见scipy.datasets.electrocardiogram)。
# (这个信号包含一个心电图,我们将使用它来演示如何找到峰值。)
import numpy as np
import matplotlib.pyplot as plt
from scipy.datasets import electrocardiogram
from scipy.signal import find_peaks
#%% 让我们找到x中所有振幅高于0的峰值(局部最大值)。
x = electrocardiogram()[2000:4000]
peaks, _ = find_peaks(x, height=0)
plt.plot(x)
plt.plot(peaks, x[peaks], "x") # 画出峰值
plt.plot(np.zeros_like(x), "--", color="gray") # 画出基线0
plt.show()
#%% 使用`height`参数。

在这里插入图片描述

```python
# 设height=(None, 0),这样就可以选择所有峰值, 或者使用array(如👇)匹配x的大小来反映不同部分的变化条件。
border = np.sin(np.linspace(0, 3 * np.pi, x.size))
peaks, _ = find_peaks(x, height=(-border, border))
plt.plot(x)
plt.plot(-border, "--", color="gray")
plt.plot(border, ":", color="gray")
plt.plot(peaks, x[peaks], "x")
plt.show()

在这里插入图片描述

#%% 对于周期信号另一个有用的选择是`distance`参数.
# 在这个案例中,我们可以很容易地从心电图 (ECG) 中的 QRS 复合波要求距离至少为150选择样本的位置 。
peaks, _ = find_peaks(x, distance=150)
np.diff(peaks) # 差分
# array([186, 180, 177, 171, 177, 169, 167, 164, 158, 162, 172])
plt.plot(x)
plt.plot(peaks, x[peaks], "x")
plt.show()
# peaks array([ 49, 302, 515, 691, 909])

在这里插入图片描述

#%% `prominences`特别是对于噪声信号峰值可以很容易地按其分组
# (见peak_prominences)例如,我们可以选择除 对于上述 QRS 波群,将允许的突出度限制为 0.6。
peaks, properties = find_peaks(x, prominence=(None, 0.6))
properties["prominences"].max()
# 0.5049999999999999
plt.plot(x)
plt.plot(peaks, x[peaks], "x")
plt.show()

在这里插入图片描述

#%% 最后, `prominence=1, width=20`
# 让我们检查一下心电图的不同部分,其中包含不同形状的节拍形式。
# 为了仅选择非典型心跳,我们结合👆🏻两个条件
x = electrocardiogram()[17000:18000]
peaks, properties = find_peaks(x, prominence=1, width=20)
properties["prominences"], properties["widths"]
#   # array([1.495, 2.3  ]), array([36.93773946, 39.32723577]))
plt.plot(x)
plt.plot(peaks, x[peaks], "x")
plt.vlines(x=peaks, ymin=x[peaks] - properties["prominences"],ymax = x[peaks], color = "C1")
plt.hlines(y=properties["width_heights"], xmin=properties["left_ips"],xmax=properties["right_ips"], color = "C1")
plt.show()

在这里插入图片描述

翻译: scipy自带的文档

这篇关于学习笔记: `scipy.signal.find_peaks` 寻峰函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/164744

相关文章

pandas使用apply函数给表格同时添加多列

《pandas使用apply函数给表格同时添加多列》本文介绍了利用Pandas的apply函数在DataFrame中同时添加多列,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录一、Pandas使用apply函数给表格同时添加多列二、应用示例一、Pandas使用apply函

Python中Namespace()函数详解

《Python中Namespace()函数详解》Namespace是argparse模块提供的一个类,用于创建命名空间对象,它允许通过点操作符访问数据,比字典更易读,在深度学习项目中常用于加载配置、命... 目录1. 为什么使用 Namespace?2. Namespace 的本质是什么?3. Namesp

MySQL中如何求平均值常见实例(AVG函数详解)

《MySQL中如何求平均值常见实例(AVG函数详解)》MySQLavg()是一个聚合函数,用于返回各种记录中表达式的平均值,:本文主要介绍MySQL中用AVG函数如何求平均值的相关资料,文中通过代... 目录前言一、基本语法二、示例讲解1. 计算全表平均分2. 计算某门课程的平均分(例如:Math)三、结合

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法