Elasticsearch实战(十八)--ES搜索Doc Values/Fielddata 正排索引 深入解析

本文主要是介绍Elasticsearch实战(十八)--ES搜索Doc Values/Fielddata 正排索引 深入解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.正排索引与倒排索引


先说结论,再讲原理
!!!尽量不要再生产环境使用fielddata=true,即使要用也要控制好占用内存比例的大小,否则容易出现OOM
!!!尽量不要再生产环境使用fielddata=true,即使要用也要控制好占用内存比例的大小,否则容易出现OOM
!!!尽量不要再生产环境使用fielddata=true,即使要用也要控制好占用内存比例的大小,否则容易出现OOM

讲讲 原理,现在又3个文档如下

 doc1:i am jzj
 doc2:you are right
 doc3:i am lucy

正排索引->就是人们正常的思维, 一个文档包含哪些单词
doc1: i, am, jzj 3个单词
doc2: you, are, right 3个单词
doc3: i,am,lucy 3个单词

倒排索引-> 反向思维,将分词,映射到每一个doc,每个单词在哪些文档中出现
i单词:doc1,doc3
am单词:doc1,doc3
jzj单词:doc1
you单词:doc2
are单词:doc2
right单词:doc2
lucy单词:doc3

正排优势
查询文档中包括哪些term单词,天然的支持比如搜索doc1有哪些term,直接取1条数据就可以得出结果,再比如聚合排序操作 doc4中有个 age:18, order by age,直接就可以取到值,进行排序,劣势是搜索慢,比如我要找 am单词出现在哪些文档,就要便利每一个doc1,doc2,doc3,去查该文档是否包含am单词
倒排优势
查询am单词出现在哪些文档中?对于倒排索引天然的支持,因为他就是按这样子存储的,am单词:doc1,doc2,直接可以定位到doc1,doc3 两个文档,劣势是对于聚合操作及排序操作不友好
所以ES中即存在倒排索引,有存在正排索引

搜索需要用到倒排索引
排序和聚合则需要使用 “正排索引”。
Doc Values和Fielddata就是用来给文档建立正排索引的, DocValues工作地盘主要在磁盘,是建立索引的时候进行的初始化,而Fielddata的工作地盘在内存,需要开启 fielddata=true ,fielddata 构建和管理 100% 在内存中,常驻于 JVM 内存堆,使用text字段进行聚合排序的时候才加载到内存。


2.准备数据


先构造 index:testquery, 然后构造mapping结构, 插入测试数据

#构建 库index testquer
put /testquery

#构建mapping结构
put /testquery/_mapping
{
    "properties" : {
      "address" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "copy_to" : [
            "info"
          ]
        },
      "age" : {
          "type" : "long"
        },
      "area" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
      "city" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
      "content" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
      "deptName" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "fielddata" : true
        },
      "empId" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
      "info" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
      "mobile" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "copy_to" : [
            "info"
          ]
        },
      "name" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "copy_to" : [
            "info"
          ]
        },
      "provice" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          },
          "fielddata" : true
        },
      "salary" : {
          "type" : "long"
        },
      "sex" : {
          "type" : "text",
          "fields" : {
            "keyword" : {
              "type" : "keyword",
              "ignore_above" : 256
            }
          }
        },
          "addtime" : {
          "type":"date",
          //时间格式 epoch_millis表示毫秒
          "format":"yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis"
        }
    }
}

插入测试数据

put /testquery/_bulk
{"index":{"_id": 1},"addtime":"1658041203000"}
{"empId" : "111","name" : "员工1","age" : 20,"sex" : "男","mobile" : "19000001111","salary":1333,"deptName" : "技术部","provice" : "湖北省","city":"武汉","area":"光谷大道","address":"湖北省武汉市洪山区光谷大厦","content" : "i like to write best elasticsearch article", "addtime":"1658140003000"}
{"index":{"_id": 2}}
{"empId" : "222","name" : "员工2","age" : 25,"sex" : "男","mobile" : "19000002222","salary":15963,"deptName" : "销售部","provice" : "湖北省","city":"武汉","area":"江汉区","address" : "湖北省武汉市江汉路","content" : "i think java is the best programming language"}
{"index":{"_id": 3},"addtime":"1658040045600"}
{ "empId" : "333","name" : "员工3","age" : 30,"sex" : "男","mobile" : "19000003333","salary":20000,"deptName" : "技术部","provice" : "湖北省","city":"武汉","area":"经济技术开发区","address" : "湖北省武汉市经济开发区","content" : "i am only an elasticsearch beginner"}
{"index":{"_id": 4},"addtime":"1658040012000"}
{"empId" : "444","name" : "员工4","age" : 20,"sex" : "女","mobile" : "19000004444","salary":5600,"deptName" : "销售部","provice" : "湖北省","city":"武汉","area":"沌口开发区","address" : "湖北省武汉市沌口开发区","content" : "elasticsearch and hadoop are all very good solution, i am a beginner"}
{"index":{"_id": 5},"addtime":"1658040593000"}
{ "empId" : "555","name" : "员工5","age" : 20,"sex" : "男","mobile" : "19000005555","salary":9665,"deptName" : "测试部","provice" : "湖北省","city":"高新开发区","area":"武汉","address" : "湖北省武汉市东湖隧道","content" : "spark is best big data solution based on scala ,an programming language similar to java"}
{"index":{"_id": 6},"addtime":"1658043403000"}
{"empId" : "666","name" : "员工6","age" : 30,"sex" : "女","mobile" : "19000006666","salary":30000,"deptName" : "技术部","provice" : "武汉市","city":"湖北省","area":"江汉区","address" : "湖北省武汉市江汉路","content" : "i like java developer","addtime":"1658041003000"}
{"index":{"_id": 7}}
{"empId" : "777","name" : "员工7","age" : 60,"sex" : "女","mobile" : "19000007777","salary":52130,"deptName" : "测试部","provice" : "湖北省","city":"黄冈市","area":"边城区","address" : "湖北省黄冈市边城区","content" : "i like elasticsearch developer","addtime":"1658040008000"}
{"index":{"_id": 8}}
{"empId" : "888","name" : "员工8","age" : 19,"sex" : "女","mobile" : "19000008888","salary":60000,"deptName" : "技术部","provice" : "湖北省","city":"武汉","area":"汉阳区","address" : "湖北省武汉市江汉大学","content" : "i like spark language","addtime":"1656040003000"}
{"index":{"_id": 9}}
{"empId" : "999","name" : "员工9","age" : 40,"sex" : "男","mobile" : "19000009999","salary":23000,"deptName" : "销售部","provice" : "河南省","city":"郑州市","area":"二七区","address" : "河南省郑州市郑州大学","content" : "i like java developer","addtime":"1608040003000"}
{"index":{"_id": 10}}
{"empId" : "101010","name" : "张湖北","age" : 35,"sex" : "男","mobile" : "19000001010","salary":18000,"deptName" : "测试部","provice" : "湖北省","city":"武汉","area":"高新开发区","address" : "湖北省武汉市东湖高新","content" : "i like java developer i also like  elasticsearch","addtime":"1654040003000"}
{"index":{"_id": 11}}
{"empId" : "111111","name" : "王河南","age" : 61,"sex" : "男","mobile" : "19000001011","salary":10000,"deptName" : "销售部",,"provice" : "河南省","city":"开封市","area":"金明区","address" : "河南省开封市河南大学","content" : "i am not like  java ","addtime":"1658740003000"}
{"index":{"_id": 12}}
{"empId" : "121212","name" : "张大学","age" : 26,"sex" : "女","mobile" : "19000001012","salary":1321,"deptName" : "测试部",,"provice" : "河南省","city":"开封市","area":"金明区","address" : "河南省开封市河南大学","content" : "i am java developer  thing java is good","addtime":"165704003000"}
{"index":{"_id": 13}}
{"empId" : "131313","name" : "李江汉","age" : 36,"sex" : "男","mobile" : "19000001013","salary":1125,"deptName" : "销售部","provice" : "河南省","city":"郑州市","area":"二七区","address" : "河南省郑州市二七区","content" : "i like java and java is very best i like it do you like java ","addtime":"1658140003000"}
{"index":{"_id": 14}}
{"empId" : "141414","name" : "王技术","age" : 45,"sex" : "女","mobile" : "19000001014","salary":6222,"deptName" : "测试部",,"provice" : "河南省","city":"郑州市","area":"金水区","address" : "河南省郑州市金水区","content" : "i like c++","addtime":"1656040003000"}
{"index":{"_id": 15}}
{"empId" : "151515","name" : "张测试","age" : 18,"sex" : "男","mobile" : "19000001015","salary":20000,"deptName" : "技术部",,"provice" : "河南省","city":"郑州市","area":"高新开发区","address" : "河南省郑州高新开发区","content" : "i think spark is good","addtime":"1658040003000"}


3. ES field data 使用及配置


3.1 field data防止内存溢出OOM配置及熔断控制

fielddata应该在JVM中合理利用,否则会影响es性能,正确使用fielddata要配置以下参数

indices.fielddata.cache.size限制fielddata内存使用,可以是具体大小(如2G),也可以是占用内存的百分比(如20%)
运行命令进行监控 GET /_stats/fielddata ,查看当前 fielddata占用内存大小
防止一次性加载字段直接超过内存值,就要使用熔断控制断路器, ES内部检查来估算一个查询需要的内存。它然后检查要求加载的 fielddata 是否会导致 fielddata 的总量超过堆的配置比例。如果估算查询大小超出限制,就会触发熔断,查询会被中止并返回异常 ,控制参数 indices.breaker.fielddata.limit/ indices.breaker.request.limit /indices.breaker.total.limit
#控制 fielddata可以使用多少jvm内存,一般不超过20%
 indices.fielddata.cache.size

#查看
get /_stats/fielddata
get /_stats/fielddata?fields=*

如果一次性加载字段直接超过内存值,就会触发熔断,查询会被中止并返回异常 
indices.breaker.fielddata.limit fielddata级别限制,默认为堆的60% 
indices.breaker.request.limit request级别请求限制,默认为堆的40% 
indices.breaker.total.limit 保证上面两者组合起来的限制,默认堆的70%

查询fielddata占用多少 memory信息 get /_stats/fielddata?fields=* ,可以看到 fielddata一共占了 1088bytes, 字段 provice fielddata 占了 504 bytes, 字段 name fielddata 占了 584 bytes


3.2 对text类型字段进行聚合


对text人名进行 聚合count操作, 出错

“reason” : “Text fields are not optimised for operations that require per-document field data like aggregations and sorting, so these operations are disabled by default. Please use a keyword field instead. Alternatively, set fielddata=true on [name] in order to load field data by uninverting the inverted index. Note that this can use significant memory.”

get /testquery/_search
{
   "size" : 0,
    "aggs" : {
        "count_name":{
          "cardinality": {
            "field": "name"
          }
        }
        }
    }
}


出错,因为name名字字段是text类型,但是没有设置 fielddata=true,所以不允许进行 聚合排序操作


3.3 修改 fielddata=true设置


修改聚合字段 name 的 设置 fielddata=true


PUT testquery/_mapping
{
  "properties": {
    "name": { 
      "type":     "text",
      "fielddata": true
    }
  }
}

再次执行上面的 aggs 语句


PUT testquery/_mapping
{
  "properties": {
    "name": { 
      "type":     "text",
      "fielddata": true
    }
  }
}

查询成功


至此 我们已经学习了 ES 正排索引,倒排索引的应用场景及优势/劣势, 再正确的场合使用正确的索引,才能提高查询效率, 还学些了 fielddata的 内存jvm控制参数,熔断策略等来 避免线上出现事故
————————————————
版权声明:本文为CSDN博主「jzjie」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/u010134642/article/details/125834384

这篇关于Elasticsearch实战(十八)--ES搜索Doc Values/Fielddata 正排索引 深入解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/162431

相关文章

MySQL 添加索引5种方式示例详解(实用sql代码)

《MySQL添加索引5种方式示例详解(实用sql代码)》在MySQL数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中,下面给大家分享MySQL添加索引5种方式示例详解(实用sql代码),... 在mysql数据库中添加索引可以帮助提高查询性能,尤其是在数据量大的表中。索引可以在创建表时定义,也可

Mybatis Plus JSqlParser解析sql语句及JSqlParser安装步骤

《MybatisPlusJSqlParser解析sql语句及JSqlParser安装步骤》JSqlParser是一个用于解析SQL语句的Java库,它可以将SQL语句解析为一个Java对象树,允许... 目录【一】jsqlParser 是什么【二】JSqlParser 的安装步骤【三】使用场景【1】sql语

SpringBoot整合Sa-Token实现RBAC权限模型的过程解析

《SpringBoot整合Sa-Token实现RBAC权限模型的过程解析》:本文主要介绍SpringBoot整合Sa-Token实现RBAC权限模型的过程解析,本文给大家介绍的非常详细,对大家的学... 目录前言一、基础概念1.1 RBAC模型核心概念1.2 Sa-Token核心功能1.3 环境准备二、表结

MQTT SpringBoot整合实战教程

《MQTTSpringBoot整合实战教程》:本文主要介绍MQTTSpringBoot整合实战教程,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录MQTT-SpringBoot创建简单 SpringBoot 项目导入必须依赖增加MQTT相关配置编写

Java 关键字transient与注解@Transient的区别用途解析

《Java关键字transient与注解@Transient的区别用途解析》在Java中,transient是一个关键字,用于声明一个字段不会被序列化,这篇文章给大家介绍了Java关键字transi... 在Java中,transient 是一个关键字,用于声明一个字段不会被序列化。当一个对象被序列化时,被

Java JSQLParser解析SQL的使用指南

《JavaJSQLParser解析SQL的使用指南》JSQLParser是一个Java语言的SQL语句解析工具,可以将SQL语句解析成为Java类的层次结构,还支持改写SQL,下面我们就来看看它的具... 目录一、引言二、jsQLParser常见类2.1 Class Diagram2.2 Statement

JavaScript实战:智能密码生成器开发指南

本文通过JavaScript实战开发智能密码生成器,详解如何运用crypto.getRandomValues实现加密级随机密码生成,包含多字符组合、安全强度可视化、易混淆字符排除等企业级功能。学习密码强度检测算法与信息熵计算原理,获取可直接嵌入项目的完整代码,提升Web应用的安全开发能力 目录

Redis迷你版微信抢红包实战

《Redis迷你版微信抢红包实战》本文主要介绍了Redis迷你版微信抢红包实战... 目录1 思路分析1.1hCckRX 流程1.2 注意点①拆红包:二倍均值算法②发红包:list③抢红包&记录:hset2 代码实现2.1 拆红包splitRedPacket2.2 发红包sendRedPacket2.3 抢

python进行while遍历的常见错误解析

《python进行while遍历的常见错误解析》在Python中选择合适的遍历方式需要综合考虑可读性、性能和具体需求,本文就来和大家讲解一下python中while遍历常见错误以及所有遍历方法的优缺点... 目录一、超出数组范围问题分析错误复现解决方法关键区别二、continue使用问题分析正确写法关键点三

springboot项目redis缓存异常实战案例详解(提供解决方案)

《springboot项目redis缓存异常实战案例详解(提供解决方案)》redis基本上是高并发场景上会用到的一个高性能的key-value数据库,属于nosql类型,一般用作于缓存,一般是结合数据... 目录缓存异常实践案例缓存穿透问题缓存击穿问题(其中也解决了穿透问题)完整代码缓存异常实践案例Red