Langchain-Chatchat项目:1.2-Baichuan2项目整体介绍

2023-10-08 02:52

本文主要是介绍Langchain-Chatchat项目:1.2-Baichuan2项目整体介绍,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  由百川智能推出的新一代开源大语言模型,采用2.6万亿Tokens的高质量语料训练,在多个权威的中文、英文和多语言的通用、领域benchmark上取得同尺寸最佳的效果,发布包含有7B、13B的Base和经过PPO训练的Chat版本,并提供了Chat版本的4bits量化。

一.Baichuan2模型
  Baichuan2模型在通用、法律、医疗、数学、代码和多语言翻译六个领域的中英文和多语言权威数据集上对模型进行了广泛测试。

二.模型推理
1.Chat模型

>>> import torch
>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> from transformers.generation.utils import GenerationConfig
>>> tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Chat", use_fast=False, trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Chat", device_map="auto", torch_dtype=torch.bfloat16, trust_remote_code=True)
>>> model.generation_config = GenerationConfig.from_pretrained("baichuan-inc/Baichuan2-13B-Chat")
>>> messages = []
>>> messages.append({"role": "user", "content": "解释一下“温故而知新”"})
>>> response = model.chat(tokenizer, messages)
>>> print(response)
"温故而知新"是一句中国古代的成语,出自《论语·为政》篇。这句话的意思是:通过回顾过去,我们可以发现新的知识和理解。换句话说,学习历史和经验可以让我们更好地理解现在和未来。这句话鼓励我们在学习和生活中不断地回顾和反思过去的经验,从而获得新的启示和成长。通过重温旧的知识和经历,我们可以发现新的观点和理解,从而更好地应对不断变化的世界和挑战。

2.Base模型

>>> from transformers import AutoModelForCausalLM, AutoTokenizer
>>> tokenizer = AutoTokenizer.from_pretrained("baichuan-inc/Baichuan2-13B-Base", trust_remote_code=True)
>>> model = AutoModelForCausalLM.from_pretrained("baichuan-inc/Baichuan2-13B-Base", device_map="auto", trust_remote_code=True)
>>> inputs = tokenizer('登鹳雀楼->王之涣\n夜雨寄北->', return_tensors='pt')
>>> inputs = inputs.to('cuda:0')
>>> pred = model.generate(**inputs, max_new_tokens=64, repetition_penalty=1.1)
>>> print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True))
登鹳雀楼->王之涣
夜雨寄北->李商隐

3.命令行工具方式和网页demo方式

python cli_demo.py
streamlit run web_demo.py

三.模型微调
1.依赖安装
  如需使用LoRA等轻量级微调方法需额外安装peft,如需使用xFormers进行训练加速需额外安装xFormers,如下所示:

git clone https://github.com/baichuan-inc/Baichuan2.git
cd Baichuan2/fine-tune
pip install -r requirements.txt

2.单机训练
  下面是一个微调Baichuan2-7B-Base的单机训练例子,训练数据data/belle_chat_ramdon_10k.json来自multiturn_chat_0.8M采样出的1万条,如下所示:

hostfile=""
deepspeed --hostfile=$hostfile fine-tune.py  \--report_to "none" \--data_path "data/belle_chat_ramdon_10k.json" \--model_name_or_path "baichuan-inc/Baichuan2-7B-Base" \--output_dir "output" \--model_max_length 512 \--num_train_epochs 4 \--per_device_train_batch_size 16 \--gradient_accumulation_steps 1 \--save_strategy epoch \--learning_rate 2e-5 \--lr_scheduler_type constant \--adam_beta1 0.9 \--adam_beta2 0.98 \--adam_epsilon 1e-8 \--max_grad_norm 1.0 \--weight_decay 1e-4 \--warmup_ratio 0.0 \--logging_steps 1 \--gradient_checkpointing True \--deepspeed ds_config.json \--bf16 True \--tf32 True

3.多机训练
  多机训练只需要给一下hostfile,同时在训练脚本里面指定hosftfile的路径:

hostfile="/path/to/hostfile"
deepspeed --hostfile=$hostfile fine-tune.py  \--report_to "none" \--data_path "data/belle_chat_ramdon_10k.json" \--model_name_or_path "baichuan-inc/Baichuan2-7B-Base" \--output_dir "output" \--model_max_length 512 \--num_train_epochs 4 \--per_device_train_batch_size 16 \--gradient_accumulation_steps 1 \--save_strategy epoch \--learning_rate 2e-5 \--lr_scheduler_type constant \--adam_beta1 0.9 \--adam_beta2 0.98 \--adam_epsilon 1e-8 \--max_grad_norm 1.0 \--weight_decay 1e-4 \--warmup_ratio 0.0 \--logging_steps 1 \--gradient_checkpointing True \--deepspeed ds_config.json \--bf16 True \--tf32 True

  其中,hostfile内容如下所示:

ip1 slots=8
ip2 slots=8
ip3 slots=8
ip4 slots=8
....

4.轻量化微调
  如需使用仅需在上面的脚本中加入参数--use_lora True,LoRA具体的配置可见fine-tune.py脚本。使用LoRA微调后可以使用下面的命令加载模型:

from peft import AutoPeftModelForCausalLM
model = AutoPeftModelForCausalLM.from_pretrained("output", trust_remote_code=True)

四.其它
1.对Baichuan1的推理优化迁移到Baichuan2
  用户只需要利用以下脚本离线对Baichuan2模型的最后一层lm_head做归一化,并替换掉lm_head.weight即可。替换完后,就可以像对Baichuan1模型一样对转换后的模型做编译优化等工作:

import torch
import os
ori_model_dir = 'your Baichuan 2 model directory'
# To avoid overwriting the original model, it's best to save the converted model to another directory before replacing it
new_model_dir = 'your normalized lm_head weight Baichuan 2 model directory'
model = torch.load(os.path.join(ori_model_dir, 'pytorch_model.bin'))
lm_head_w = model['lm_head.weight']
lm_head_w = torch.nn.functional.normalize(lm_head_w)
model['lm_head.weight'] = lm_head_w
torch.save(model, os.path.join(new_model_dir, 'pytorch_model.bin'))

2.中间Checkpoints
  下图给出了这些checkpoints在C-Eval、MMLU、CMMLU三个benchmark上的效果变化:


参考文献:
[1]https://github.com/baichuan-inc/Baichuan2
[2]baichuan-inc:https://huggingface.co/baichuan-inc
[3]https://huggingface.co/baichuan-inc/Baichuan2-7B-Intermediate-Checkpoints
[4]Baichuan 2: Open Large-scale Language Models:https://arxiv.org/abs/2309.10305

这篇关于Langchain-Chatchat项目:1.2-Baichuan2项目整体介绍的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/162207

相关文章

基于 Cursor 开发 Spring Boot 项目详细攻略

《基于Cursor开发SpringBoot项目详细攻略》Cursor是集成GPT4、Claude3.5等LLM的VSCode类AI编程工具,支持SpringBoot项目开发全流程,涵盖环境配... 目录cursor是什么?基于 Cursor 开发 Spring Boot 项目完整指南1. 环境准备2. 创建

Three.js构建一个 3D 商品展示空间完整实战项目

《Three.js构建一个3D商品展示空间完整实战项目》Three.js是一个强大的JavaScript库,专用于在Web浏览器中创建3D图形,:本文主要介绍Three.js构建一个3D商品展... 目录引言项目核心技术1. 项目架构与资源组织2. 多模型切换、交互热点绑定3. 移动端适配与帧率优化4. 可

sky-take-out项目中Redis的使用示例详解

《sky-take-out项目中Redis的使用示例详解》SpringCache是Spring的缓存抽象层,通过注解简化缓存管理,支持Redis等提供者,适用于方法结果缓存、更新和删除操作,但无法实现... 目录Spring Cache主要特性核心注解1.@Cacheable2.@CachePut3.@Ca

Java中HashMap的用法详细介绍

《Java中HashMap的用法详细介绍》JavaHashMap是一种高效的数据结构,用于存储键值对,它是基于哈希表实现的,提供快速的插入、删除和查找操作,:本文主要介绍Java中HashMap... 目录一.HashMap1.基本概念2.底层数据结构:3.HashCode和equals方法为什么重写Has

SpringBoot通过main方法启动web项目实践

《SpringBoot通过main方法启动web项目实践》SpringBoot通过SpringApplication.run()启动Web项目,自动推断应用类型,加载初始化器与监听器,配置Spring... 目录1. 启动入口:SpringApplication.run()2. SpringApplicat

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Spring Boot项目如何使用外部application.yml配置文件启动JAR包

《SpringBoot项目如何使用外部application.yml配置文件启动JAR包》文章介绍了SpringBoot项目通过指定外部application.yml配置文件启动JAR包的方法,包括... 目录Spring Boot项目中使用外部application.yml配置文件启动JAR包一、基本原理

Springboot项目登录校验功能实现

《Springboot项目登录校验功能实现》本文介绍了Web登录校验的重要性,对比了Cookie、Session和JWT三种会话技术,分析其优缺点,并讲解了过滤器与拦截器的统一拦截方案,推荐使用JWT... 目录引言一、登录校验的基本概念二、HTTP协议的无状态性三、会话跟android踪技术1. Cook

springboot项目中集成shiro+jwt完整实例代码

《springboot项目中集成shiro+jwt完整实例代码》本文详细介绍如何在项目中集成Shiro和JWT,实现用户登录校验、token携带及接口权限管理,涉及自定义Realm、ModularRe... 目录简介目的需要的jar集成过程1.配置shiro2.创建自定义Realm2.1 LoginReal