为什么HashMap的加载因子一定是0,java教程视频网

2023-10-08 02:50

本文主要是介绍为什么HashMap的加载因子一定是0,java教程视频网,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

我们知道,HashMap 是通过拉链法来解决哈希冲突的。

为了减少哈希冲突发生的概率,当 HashMap 的数组长度达到一个临界值的时候,就会触发扩容(可以点击链接查看 HashMap 的扩容机制),扩容后会将之前小数组中的元素转移到大数组中,这是一个相当耗时的操作。

这个临界值由什么来确定呢?

临界值 = 初始容量 * 加载因子

一开始,HashMap 的容量是 16:

static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16

加载因子是 0.75:

static final float DEFAULT_LOAD_FACTOR = 0.75f;

也就是说,当 16*0.75=12 时,会触发扩容机制。

为什么加载因子会选择 0.75 呢?为什么不是0.8、0.6呢?

这跟统计学里的一个很重要的原理——泊松分布有关。

是时候上维基百科了:

泊松分布,是一种统计与概率学里常见到的离散概率分布,由法国数学家西莫恩·德尼·泊松在1838年时提出。它会对随机事件的发生次数进行建模,适用于涉及计算在给定的时间段、距离、面积等范围内发生随机事件的次数的应用情形。

阮一峰老师曾在一篇博文中详细的介绍了泊松分布和指数分布,大家可以去看一下。

链接:https://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html

具体是用这么一个公式来表示的。

等号的左边,P 表示概率,N表示某种函数关系,t 表示时间,n 表示数量。

在 HashMap 的 doc 文档里,曾有这么一段描述:

Because TreeNodes are about twice the size of regular nodes, we

use them only when bins contain enough nodes to warrant use

(see TREEIFY_THRESHOLD). And when they become too small (due to

removal or resizing) they are converted back to plain bins. In

usage

【一线大厂Java面试题解析+后端开发学习笔记+最新架构讲解视频+实战项目源码讲义】浏览器打开:qq.cn.hn/FTf 免费领取

s with well-distributed user hashCodes, tree bins are

rarely used. Ideally, under random hashCodes, the frequency of

nodes in bins follows a Poisson distribution

(http://en.wikipedia.org/wiki/Poisson_distribution) with a

parameter of about 0.5 on average for the default resizing

threshold of 0.75, although with a large variance because of

resizing granularity. Ignoring variance, the expected

occurrences of list size k are (exp(-0.5) * pow(0.5, k) /

factorial(k)). The first values are:

0: 0.60653066

1: 0.30326533

2: 0.07581633

3: 0.01263606

4: 0.00157952

5: 0.00015795

6: 0.00001316

7: 0.00000094

8: 0.00000006

more: less than 1 in ten million

大致的意思就是:

因为 TreeNode(红黑树)的大小约为链表节点的两倍,所以我们只有在一个拉链已经拉了足够节点的时候才会转为tree(参考TREEIFY_THRESHOLD)。并且,当这个hash桶的节点因为移除或者扩容后resize数量变小的时候,我们会将树再转为拉链。如果一个用户的数据的hashcode值分布得很均匀的话,就会很少使用到红黑树。

理想情况下,我们使用随机的hashcode值,加载因子为0.75情况,尽管由于粒度调整会产生较大的方差,节点的分布频率仍然会服从参数为0.5的泊松分布。链表的长度为 8 发生的概率仅有 0.00000006。

虽然这段话的本意更多的是表示 jdk 8中为什么拉链长度超过8的时候进行了红黑树转换,但提到了 0.75 这个加载因子——但这并不是为什么加载因子是 0.75 的答案。

为了搞清楚到底为什么,我看到了这篇文章:

参考链接:https://segmentfault.com/a/1190000023308658

里面提到了一个概念:二项分布(二哥概率论没学好,只能简单说一说)。

在做一件事情的时候,其结果的概率只有2种情况,和抛硬币一样,不是正面就是反面。

为此,我们做了 N 次实验,那么在每次试验中只有两种可能的结果,并且每次实验是独立的,不同实验之间互不影响,每次实验成功的概率都是一样的。

以此理论为基础,我们来做这样的实验:我们往哈希表中扔数据,如果发生哈希冲突就为失败,否则为成功。

我们可以设想,实验的hash值是随机的,并且经过hash运算的键都会映射到hash表的地址空间上,那么这个结果也是随机的。所以,每次put的时候就相当于我们在扔一个16面(我们先假设默认长度为16)的骰子,扔骰子实验那肯定是相互独立的。碰撞发生即扔了n次有出现重复数字。

然后,我们的目的是啥呢?

就是掷了k次骰子,没有一次是相同的概率,需要尽可能的大些,一般意义上我们肯定要大于0.5(这个数是个理想数,但是我是能接受的)。

于是,n次事件里面,碰撞为0的概率,由上面公式得:

这个概率值需要大于0.5,我们认为这样的hashmap可以提供很低的碰撞率。所以:

这时候,我们对于该公式其实最想求的时候长度s的时候,n为多少次就应该进行扩容了?而负载因子则是 n / s n/s n/s的值。所以推导如下:

这篇关于为什么HashMap的加载因子一定是0,java教程视频网的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/162187

相关文章

分布式锁在Spring Boot应用中的实现过程

《分布式锁在SpringBoot应用中的实现过程》文章介绍在SpringBoot中通过自定义Lock注解、LockAspect切面和RedisLockUtils工具类实现分布式锁,确保多实例并发操作... 目录Lock注解LockASPect切面RedisLockUtils工具类总结在现代微服务架构中,分布

Java使用Thumbnailator库实现图片处理与压缩功能

《Java使用Thumbnailator库实现图片处理与压缩功能》Thumbnailator是高性能Java图像处理库,支持缩放、旋转、水印添加、裁剪及格式转换,提供易用API和性能优化,适合Web应... 目录1. 图片处理库Thumbnailator介绍2. 基本和指定大小图片缩放功能2.1 图片缩放的

Python pandas库自学超详细教程

《Pythonpandas库自学超详细教程》文章介绍了Pandas库的基本功能、安装方法及核心操作,涵盖数据导入(CSV/Excel等)、数据结构(Series、DataFrame)、数据清洗、转换... 目录一、什么是Pandas库(1)、Pandas 应用(2)、Pandas 功能(3)、数据结构二、安

Spring Boot集成/输出/日志级别控制/持久化开发实践

《SpringBoot集成/输出/日志级别控制/持久化开发实践》SpringBoot默认集成Logback,支持灵活日志级别配置(INFO/DEBUG等),输出包含时间戳、级别、类名等信息,并可通过... 目录一、日志概述1.1、Spring Boot日志简介1.2、日志框架与默认配置1.3、日志的核心作用

破茧 JDBC:MyBatis 在 Spring Boot 中的轻量实践指南

《破茧JDBC:MyBatis在SpringBoot中的轻量实践指南》MyBatis是持久层框架,简化JDBC开发,通过接口+XML/注解实现数据访问,动态代理生成实现类,支持增删改查及参数... 目录一、什么是 MyBATis二、 MyBatis 入门2.1、创建项目2.2、配置数据库连接字符串2.3、入

Springboot项目启动失败提示找不到dao类的解决

《Springboot项目启动失败提示找不到dao类的解决》SpringBoot启动失败,因ProductServiceImpl未正确注入ProductDao,原因:Dao未注册为Bean,解决:在启... 目录错误描述原因解决方法总结***************************APPLICA编

深度解析Spring Security 中的 SecurityFilterChain核心功能

《深度解析SpringSecurity中的SecurityFilterChain核心功能》SecurityFilterChain通过组件化配置、类型安全路径匹配、多链协同三大特性,重构了Spri... 目录Spring Security 中的SecurityFilterChain深度解析一、Security

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Apache Ignite 与 Spring Boot 集成详细指南

《ApacheIgnite与SpringBoot集成详细指南》ApacheIgnite官方指南详解如何通过SpringBootStarter扩展实现自动配置,支持厚/轻客户端模式,简化Ign... 目录 一、背景:为什么需要这个集成? 二、两种集成方式(对应两种客户端模型) 三、方式一:自动配置 Thick

Spring WebClient从入门到精通

《SpringWebClient从入门到精通》本文详解SpringWebClient非阻塞响应式特性及优势,涵盖核心API、实战应用与性能优化,对比RestTemplate,为微服务通信提供高效解决... 目录一、WebClient 概述1.1 为什么选择 WebClient?1.2 WebClient 与