OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)

本文主要是介绍OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)


目录

OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)

前言

环境

灰度图

模糊图片

GaussianBlur函数

提取边缘

边缘膨胀

边缘细化

整体对照

总结


前言

计算机视觉市场巨大而且持续增长,且这方面没有标准API,如今的计算机视觉软件大概有以下三种:

1、研究代码(慢,不稳定,独立并与其他库不兼容)
2、耗费很高的商业化工具(比如Halcon, MATLAB+Simulink)
3、依赖硬件的一些特别的解决方案(比如视频监控,制造控制系统,医疗设备)这是如今的现状,而标准的API将简化计算机视觉程序和解决方案的开发,OpenCV致力于成为这样的标准API。

OpenCV致力于真实世界的实时应用,通过优化的C代码的编写对其执行速度带来了可观的提升,并且可以通过购买Intel的IPP高性能多媒体函数库(Integrated Performance Primitives)得到更快的处理速度。

故而我们选择学习OpenCV,我们来一步步的学习OpenCV。


环境

在这里我们不仅仅需要cv2的环境,还需要numpy的环境,故而需要我们单独安装一下:

pip install numpy

win的环境与CentOS的有些区别,是库的区别,我本地是华为的库,CentOS是CSDN库,都能用。

灰度图

这里需要引入numpy做计算,也就是kernel的卷积核。

import cv2
import numpy as np# 获取图片的数组
img = cv2.imread("800_600.jpg")
# 卷积核:一般用一个5行5列的全是1的数组
kernel = np.ones((5, 5), np.uint8)
# 生成灰度图
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 展示
cv2.imshow("Gray Image", imgGray)cv2.waitKey(0)

实际效果:灰度

模糊图片

代码:可以修改模糊的强度,是一个奇数,取值范围建议1~151的奇数,不然就啥也看不清了。

import cv2# 获取图片的数组
img = cv2.imread("800_600.jpg")
# 模糊图
imgBlur = cv2.GaussianBlur(img, (151, 151), 5)
# 展示
cv2.imshow("Gray Image", imgBlur)cv2.waitKey(0)

模糊效果

GaussianBlur函数

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。

语法:

dst=GaussianBlur(src,ksize,sigmaX [,dst [,sigmaY [,borderType]]])

参数:

src:图片

ksize:高斯内核大小。 ksize.width和ksize.height可以不同,但​​它们都必须为正数和奇数,也可以为零,然后根据sigma计算得出。

sigmaX:X方向上的高斯核标准偏差。

sigmaY:Y方向上的高斯核标准差;如果sigmaY为零,则将其设置为等于sigmaX;如果两个sigmas为零,则分别从ksize.width和ksize.height计算得出;为了完全控制结果,而不管将来可能对所有这些语义进行的修改,建议指定所有ksize,sigmaX和sigmaY。

import cv2# 获取图片的数组
img = cv2.imread("800_600.jpg")
# 模糊图
imgBlur = cv2.GaussianBlur(img, (151, 151), 3, 17)
# 展示
cv2.imshow("Gray Image", imgBlur)cv2.waitKey(0)

添加高斯核标准差效果:

提取边缘

代码:

import cv2# 获取图片的数组
img = cv2.imread("800_600.jpg")
# 边缘提取
imgCanny = cv2.Canny(img, 150, 200)
# 展示
cv2.imshow("imgCanny", imgCanny)cv2.waitKey(0)

有些像描边,可以用于扣除祛斑啥的这种单独的点点。

边缘膨胀

代码:

import cv2
import numpy as np# 获取图片的数组
img = cv2.imread("800_600.jpg")
kernel = np.ones((5, 5), np.uint8)
# 边缘提取
imgCanny = cv2.Canny(img, 150, 200)
# 膨胀边缘
imgDialation = cv2.dilate(imgCanny, kernel, iterations=1)
# 展示
cv2.imshow("imgCanny", imgCanny)
cv2.imshow("imgDialation", imgDialation)cv2.waitKey(0)

边缘膨胀,也就是强化了边缘。 

边缘细化

代码:

import cv2
import numpy as np# 获取图片的数组
img = cv2.imread("800_600.jpg")
kernel = np.ones((5, 5), np.uint8)
# 边缘提取
imgCanny = cv2.Canny(img, 150, 200)
# 膨胀边缘
imgDialation = cv2.dilate(imgCanny, kernel, iterations=1)
# 边缘细化
imgEroded = cv2.erode(imgDialation, kernel, iterations=1)
# 展示
cv2.imshow("imgCanny", imgCanny)
cv2.imshow("imgDialation", imgDialation)
cv2.imshow("imgEroded", imgEroded)cv2.waitKey(0)

实际效果: 

整体对照

总结

很多参数细节都是需要我们自己来根据实际需求来调整的,包括后期的AI循环也是一个参数一个参数的调整出来的结果,搞这个东西要细心与耐心缺一不可。

这篇关于OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/feng8403000/article/details/128914099
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/161989

相关文章

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

MySQL 中的 CAST 函数详解及常见用法

《MySQL中的CAST函数详解及常见用法》CAST函数是MySQL中用于数据类型转换的重要函数,它允许你将一个值从一种数据类型转换为另一种数据类型,本文给大家介绍MySQL中的CAST... 目录mysql 中的 CAST 函数详解一、基本语法二、支持的数据类型三、常见用法示例1. 字符串转数字2. 数字

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

MySQL count()聚合函数详解

《MySQLcount()聚合函数详解》MySQL中的COUNT()函数,它是SQL中最常用的聚合函数之一,用于计算表中符合特定条件的行数,本文给大家介绍MySQLcount()聚合函数,感兴趣的朋... 目录核心功能语法形式重要特性与行为如何选择使用哪种形式?总结深入剖析一下 mysql 中的 COUNT

MySQL 中 ROW_NUMBER() 函数最佳实践

《MySQL中ROW_NUMBER()函数最佳实践》MySQL中ROW_NUMBER()函数,作为窗口函数为每行分配唯一连续序号,区别于RANK()和DENSE_RANK(),特别适合分页、去重... 目录mysql 中 ROW_NUMBER() 函数详解一、基础语法二、核心特点三、典型应用场景1. 数据分

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python get()函数用法案例详解

《Pythonget()函数用法案例详解》在Python中,get()是字典(dict)类型的内置方法,用于安全地获取字典中指定键对应的值,它的核心作用是避免因访问不存在的键而引发KeyError错... 目录简介基本语法一、用法二、案例:安全访问未知键三、案例:配置参数默认值简介python是一种高级编

python 常见数学公式函数使用详解(最新推荐)

《python常见数学公式函数使用详解(最新推荐)》文章介绍了Python的数学计算工具,涵盖内置函数、math/cmath标准库及numpy/scipy/sympy第三方库,支持从基础算术到复杂数... 目录python 数学公式与函数大全1. 基本数学运算1.1 算术运算1.2 分数与小数2. 数学函数