OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)

本文主要是介绍OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)


目录

OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)

前言

环境

灰度图

模糊图片

GaussianBlur函数

提取边缘

边缘膨胀

边缘细化

整体对照

总结


前言

计算机视觉市场巨大而且持续增长,且这方面没有标准API,如今的计算机视觉软件大概有以下三种:

1、研究代码(慢,不稳定,独立并与其他库不兼容)
2、耗费很高的商业化工具(比如Halcon, MATLAB+Simulink)
3、依赖硬件的一些特别的解决方案(比如视频监控,制造控制系统,医疗设备)这是如今的现状,而标准的API将简化计算机视觉程序和解决方案的开发,OpenCV致力于成为这样的标准API。

OpenCV致力于真实世界的实时应用,通过优化的C代码的编写对其执行速度带来了可观的提升,并且可以通过购买Intel的IPP高性能多媒体函数库(Integrated Performance Primitives)得到更快的处理速度。

故而我们选择学习OpenCV,我们来一步步的学习OpenCV。


环境

在这里我们不仅仅需要cv2的环境,还需要numpy的环境,故而需要我们单独安装一下:

pip install numpy

win的环境与CentOS的有些区别,是库的区别,我本地是华为的库,CentOS是CSDN库,都能用。

灰度图

这里需要引入numpy做计算,也就是kernel的卷积核。

import cv2
import numpy as np# 获取图片的数组
img = cv2.imread("800_600.jpg")
# 卷积核:一般用一个5行5列的全是1的数组
kernel = np.ones((5, 5), np.uint8)
# 生成灰度图
imgGray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 展示
cv2.imshow("Gray Image", imgGray)cv2.waitKey(0)

实际效果:灰度

模糊图片

代码:可以修改模糊的强度,是一个奇数,取值范围建议1~151的奇数,不然就啥也看不清了。

import cv2# 获取图片的数组
img = cv2.imread("800_600.jpg")
# 模糊图
imgBlur = cv2.GaussianBlur(img, (151, 151), 5)
# 展示
cv2.imshow("Gray Image", imgBlur)cv2.waitKey(0)

模糊效果

GaussianBlur函数

高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。

语法:

dst=GaussianBlur(src,ksize,sigmaX [,dst [,sigmaY [,borderType]]])

参数:

src:图片

ksize:高斯内核大小。 ksize.width和ksize.height可以不同,但​​它们都必须为正数和奇数,也可以为零,然后根据sigma计算得出。

sigmaX:X方向上的高斯核标准偏差。

sigmaY:Y方向上的高斯核标准差;如果sigmaY为零,则将其设置为等于sigmaX;如果两个sigmas为零,则分别从ksize.width和ksize.height计算得出;为了完全控制结果,而不管将来可能对所有这些语义进行的修改,建议指定所有ksize,sigmaX和sigmaY。

import cv2# 获取图片的数组
img = cv2.imread("800_600.jpg")
# 模糊图
imgBlur = cv2.GaussianBlur(img, (151, 151), 3, 17)
# 展示
cv2.imshow("Gray Image", imgBlur)cv2.waitKey(0)

添加高斯核标准差效果:

提取边缘

代码:

import cv2# 获取图片的数组
img = cv2.imread("800_600.jpg")
# 边缘提取
imgCanny = cv2.Canny(img, 150, 200)
# 展示
cv2.imshow("imgCanny", imgCanny)cv2.waitKey(0)

有些像描边,可以用于扣除祛斑啥的这种单独的点点。

边缘膨胀

代码:

import cv2
import numpy as np# 获取图片的数组
img = cv2.imread("800_600.jpg")
kernel = np.ones((5, 5), np.uint8)
# 边缘提取
imgCanny = cv2.Canny(img, 150, 200)
# 膨胀边缘
imgDialation = cv2.dilate(imgCanny, kernel, iterations=1)
# 展示
cv2.imshow("imgCanny", imgCanny)
cv2.imshow("imgDialation", imgDialation)cv2.waitKey(0)

边缘膨胀,也就是强化了边缘。 

边缘细化

代码:

import cv2
import numpy as np# 获取图片的数组
img = cv2.imread("800_600.jpg")
kernel = np.ones((5, 5), np.uint8)
# 边缘提取
imgCanny = cv2.Canny(img, 150, 200)
# 膨胀边缘
imgDialation = cv2.dilate(imgCanny, kernel, iterations=1)
# 边缘细化
imgEroded = cv2.erode(imgDialation, kernel, iterations=1)
# 展示
cv2.imshow("imgCanny", imgCanny)
cv2.imshow("imgDialation", imgDialation)
cv2.imshow("imgEroded", imgEroded)cv2.waitKey(0)

实际效果: 

整体对照

总结

很多参数细节都是需要我们自己来根据实际需求来调整的,包括后期的AI循环也是一个参数一个参数的调整出来的结果,搞这个东西要细心与耐心缺一不可。

这篇关于OpenCV这么简单为啥不学——1.1、图像处理(灰度图、模糊图片、GaussianBlur函数、提取边缘、边缘膨胀、边缘细化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/161989

相关文章

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数

python中的高阶函数示例详解

《python中的高阶函数示例详解》在Python中,高阶函数是指接受函数作为参数或返回函数作为结果的函数,下面:本文主要介绍python中高阶函数的相关资料,文中通过代码介绍的非常详细,需要的朋... 目录1.定义2.map函数3.filter函数4.reduce函数5.sorted函数6.自定义高阶函数

Python中的sort方法、sorted函数与lambda表达式及用法详解

《Python中的sort方法、sorted函数与lambda表达式及用法详解》文章对比了Python中list.sort()与sorted()函数的区别,指出sort()原地排序返回None,sor... 目录1. sort()方法1.1 sort()方法1.2 基本语法和参数A. reverse参数B.

uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)

《uni-app小程序项目中实现前端图片压缩实现方式(附详细代码)》在uni-app开发中,文件上传和图片处理是很常见的需求,但也经常会遇到各种问题,下面:本文主要介绍uni-app小程序项目中实... 目录方式一:使用<canvas>实现图片压缩(推荐,兼容性好)示例代码(小程序平台):方式二:使用uni

Python实现简单封装网络请求的示例详解

《Python实现简单封装网络请求的示例详解》这篇文章主要为大家详细介绍了Python实现简单封装网络请求的相关知识,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装依赖核心功能说明1. 类与方法概览2.NetHelper类初始化参数3.ApiResponse类属性与方法使用实

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

Python Excel 通用筛选函数的实现

《PythonExcel通用筛选函数的实现》本文主要介绍了PythonExcel通用筛选函数的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着... 目录案例目的示例数据假定数据来源是字典优化:通用CSV数据处理函数使用说明使用示例注意事项案例目的第一

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H